Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage
Age 16 to 18
Article by Peter Clarke

Published 1998 Revised 2011

Telescoping Functions


$$ A=\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)} $$
Can you find the value of $A$ without using a calculator?

This problem appeared in a recent maths contest in the U.S.A.. I managed to solve it, but was curious to find out how the examiner had constructed this problem. Is it a coincidence that $A$ is an integer? What is the significance of the numbers increasing by $12$? What is special about $324$?

If you haven't already solved the problem then I will give you a hint:
$$ 324=18^2 $$ and \begin{eqnarray} a^4 + 18^2 & = & (a^2+18)^2 - 2\times 18 a^2 \textrm{ [complete the square]}\\ & = & (a^2+18)^2 - (6a)^2 \textrm{ [difference of squares]}\\ & = & (a^2+18-6a)(a^2+18+6a)\\ & = & [(a-3)^2+(3)^2][(a+3)^2+(3)^2] \end{eqnarray} Can you find $A$ now?

For example, $$ 10^4+324=[(10-3)^2+3^2][(10+3)^2+3^2]=(7^2+3^2)(13^2+3^2) $$ and $$ 22^4+324=[(22-3)^2+3^2][(22+3)^2+3^2]=(19^2+3^2)(25^2+3^2) $$ We find $$ A=\frac{(7^2+3^2)(13^2+3^2)(19^2+3^2)(25^2+3^2)(31^2+3^2)(37^2+3^2) (43^2+3^2)(49^2+3^2)(55^2+3^2)(61^2+3^2)}{(1^2+3^2)(7^2+3^2)(13^2+3^2) (19^2+3^2)(25^2+3^2)(31^2+3^2)(37^2+3^2)(43^2+3^2)(49^2+3^2)(55^2+3^2)} $$ or, $$ A=\frac{61^2+3^2}{1^2+3^2}=373 $$ We are led to an interesting question: What is the relationship between the numbers in the problem which makes possible all the calculations?

If we want to see what is going on, then we could try using some algebra.

Using our previous method, $$ a^4+b^2=(a^2+b)^2-2a^2 b. $$ If we are going to use $$ x^2-y^2=(x+y)(x-y) $$ then we want $2b$ to be a perfect square. Now we see the significance of $18$ in our problem: $$ 2\times 18=36=6^2 $$ If $2b$ is a perfect square then $b$ must be double a perfect square so put $b=2c^2$.

Let us rework our algebra with $c$ instead of $b$. $$ a^4+b^2=a^4+(2c^2)^2=a^4+4c^4 $$ and \begin{eqnarray} a^4+4c^4 & = & (a^2+2c^2)^2-4a^2c^2\\ & = & [a^2+2c^2-2a c][a^2+2c^2 +2a c]\\ & = & [(a-c)^2+c^2][(a+c)^2+c^2]. \end{eqnarray} Now we need to factorize terms like $10^4+324$. We need $a=10$ and $c=3$. So, $$ 10^4+324=10^4+4\times 3^4=(7^2+3^2)(13^2+3^2) $$ So far so good, but what has caused all the cancelling? A little thought will convince you that we need to increase $a$ by $4c$ each time as we move to the right. So $$ 10+(4\times 3)=22 $$ and $$ 22+(4\times 3)=34 $$ etc.

Also, in the denominator, we need to start with $$ 10-(2\times 3)=4. $$ Where do we go from here? I tried to choose other values of $a$ and $c$ to produce other problems.

For example, $$ B=\frac{(7^4+64)(15^4+64)(23^4+64)(31^4+64)(39^4+64)}{(3^4+64) (11^4+64)(19^4+64)(27^4+64)(35^4+64)} $$ Find $B$. (A calculator may only be used to check your answer!)

If your algebra is good enough (try it!) you may be able to prove the general formula: $$ \prod_{r=0}^{r=n}\frac{[x+(4r+2)c+c]^4+4c^4]}{[x+4r c+c]^4+4c^4}= \frac{[x+4(n+1)c]^2+c^2}{x^2+c^2}. $$ Check that $x=1$, $c=3$, $n=4$ gives our original problem. Also, $x=1$, $c=2$, $n=4$ gives $B=337$.

Let us return to the three questions posed near the beginning of this article. $324$ is special because it can be written as $4c^4$. Also, we can see that $r$ increases by $1$, $x+(4r+2)c+c$ increases by $4c$. When $c=3$ this increase is $12$. There remains a matter of $A$ being an integer.

We end up with an integer only when $x^2+c^2$ is a factor of $[x+4(n+1)c]^2+c^2$. When does this happen? I cannot see an easy way to deal with this in general, but we can look at particular cases. For example, $B$ has $x=1$ and $c=2$, so we want $5$ to be a factor of $(1+8n+8)^2+4$. Now, $$ (8n+9)^2+4=64n^2+144n+85=5(12n^2+28n+17)+4n^2+4n $$ So we need $4n^2+4n=4n(n+1)$ to be divisible by $5$.

So we can choose $n=4$, $5$, $9$, $10$ etc.

For $A$, I calculate that $n$ must be $3$, $4$, $8$, $9$, $13$, $14$ etc.

Readers might like to use a computer to find other values of $x$, $n$ and $c$ satisfying these conditions.

As a check on your understanding, prove that: $$ \frac{(5^4+4)(9^4+4)(13^4+4)(17^4+4)}{(3^4+4)(7^4+4)(11^4+4)(15^4+4)}=65 $$ Can you make up a problem for your friends?

Finally, please consider this problem from the 1969 International Olympiad:

"Prove that there are infinitely many natural numbers $a$ with the following property: The number $z=n^4+a$ is not prime for any natural number.''

If you want to solve this yourself, read no further!

There is a clue in the fact that this article is based on the factorisation of numbers of the form $p^4+4q^4$.

For $z=n^4+a$, we can choose $a=4c^2$. Then, \begin{eqnarray} z & = & n^4+4c^4\\ & = & (n^2+2c^2)^2-4n^2c^2\\ & = & (n^2+2c^2+2n c)(n^2+2c^2-2n c)\\ & = & [(n+c)^2+c^2][(n-c)^2+c^2] \end{eqnarray} If $c\geq 2$ then both factors are at least $4$, so $z$ cannot be prime

So, choose $a=4c^4$ with $c=2$, $3$, $4$, $\ldots$.

There are infinitely many numbers of this form. For each of them, $z$ can be factorised, whatever the value of $n$.

Related Collections

  • More Stage 5 Students Articles

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Janusz Asked

In y = ax +b when are a, -b/a, b in arithmetic progression. The polynomial y = ax^2 + bx + c has roots r1 and r2. Can a, r1, b, r2 and c be in arithmetic progression?

Polynomial Relations

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo