Or search by topic
Published 1998 Revised 2011
Let us look again at the problem posed at the end of the last article. We asked there whether or not the number $123456$ ends up at $0$ or in a cycle of four numbers? Using a calculator, we see that $123456$ is not a multiple of $101$ so that (by what we have just shown) it cannot end up at $0$.
What about the number $12345678987654321$? This number is too big to put on a calculator so we need to find another approach for it would clearly be a very long task indeed to keep on applying the rule to this number! How do we handle this number?
We want to decide whether or not the number $12345678987654321$ is a multiple of $101$. Of course if a whole number $X$ is a multiple of $101$ then the number $12345678987654321 - X $ is also a multiple of $101$ and conversely, and using this we see that it is enough to subtract multiples of $101$ from $12345678987654321$ and then check whether or not the answer is a multiple of $101$. Better still, if P is any whole number then:
$$10000P = 9999P + P = (99 \times101)P + P$$ so that $10000 P$ is a multiple of $101$ plus $P$.
Thus, $$12345678987654321 = (1234567898765 x 10000) + 4321 = 1234567898765 + 101Q + 4321$$ for some whole number $Q$. Applying this again, we get $$1234567898765 = (123456789 x 10000) + 8765 = 123456789 + 101S + 8765$$ for some whole number $S$, and again, $$123456789 = (12345 x 10000) + 6789 = 12345 + 101T + 6789$$ for some whole number $T$.
Putting all these together, we find that the two numbers $12345678987654321$ and $( 4321 + 8765 + 6789 + 12345)$ differ by a multiple of $101$. It is enough, therefore, to check whether $(4321+8765+6789+12345)$ is, or is not, a multiple of $101$, and we have now reduced the problem to one that we can do on a calculator.
You can now answer the question : does $12345678987654321$ eventually reach $0$ or not ?
A final question : does $8765432123456789$ eventually reach $0$ or not?