Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage
Age 16 to 18
Article by Alex Goodwin

Published 1998 Revised 2010

Sum the Series


The Sum of 1 + 22 + 333 + 4444 + ... to $n$ terms


This is an extension of the NRICH problem called Clickety Click and All the Sixes , where the solution involves summing the series
$$1 + 11 + 111 + 1111 +\cdots$$ to $n$ terms.

Each term of the series $1 + 22 + 333 + 4444 +\cdots$ can be written as $k (1 + 10 + 100 + \cdots + 10^{k -1} )$ for some value of $k$. Using geometric series theory each term can be written as $k (10^ {k} -1)/9$. So the sum $S_n$ can be written as $$\eqalign{ S_n &=& 1\left(\frac{10^1-1}{9}\right) + 2\left(\frac{10^2-1}{9}\right) + 3\left(\frac{10^3-1}{9}\right) + 4\left(\frac{10^4-1}{9}\right) + \cdots \\ \; &=& {1\over9}(1.10^1 + 2.10^2 + 3.10^3 +4.10^4 + \cdots + n.10^n - (1+2+3+4+ \cdots +n)) \\ \; &=& {1\over9}(1.10^1 + 2.10^2 + 3.10^3 +4.10^4 + \cdots + n.10^n - {1\over2}n(n+1))}$$

To find the formula for $1.10^1 + 2.10^2 + 3.10^3 + 4.10^4 + \cdots + nx^n$ consider the series $$y = 1+ x + x^2 + x^3 + \cdots + x^n = \frac{x^{n+1}-1}{x-1}$$

Differentiating this expression and multiplying the derivative by x we get $$\eqalign{ x\frac{dy}{dx} &=& x + 2x^2 + 3x^3 + \cdots + nx^n \\ \; &=& \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(x-1)^2}}$$.

Hence $$10 + 2.10^2 + 3.10^3 + \cdots + n.10^n = \frac{n.10^{n+2} - (n+1).10^{n+1} + 10}{81}$$

So the sum of $n$ terms of the original series is $$S_n = 1 + 22 + 333 + 4444 + \cdots = {1\over9}\left(\frac{n.10^{n+2} - (n+1).10^{n+1} + 10}{81} - {1\over2}n(n+1)\right)$$

Note that when $n$ is greater than 9, terms cannot be written with a repeated single digit and the $k^{th}$ term should be treated as $k (10^0 + 10^1 + 10^2 + \cdots + 10^{k-1})$.



Related Collections

  • More Stage 5 Students Articles

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Degree Ceremony

Can you find the sum of the squared sine values?

OK! Now Prove It

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo