Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rotation and Area

Age 14 to 16
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

First, it is necessary to work out where B is.

Since A is 4 up and 4 along from the origin, OA makes a $45^\circ$ angle with the $x$ axis. This means that the obtuse angle between OA and the $x$ axis must be $135^\circ$, so B must lie on the $x$ axis. This is shown in the diagrams below, where the red triangle is the triangle whose area we need to find.
              

The distances OA and OB are equal, since OB is just a rotation of OA. This distance can be found by considering the triangle below:
 
 This triangle is right-angled and OA is the hypotenuse, so, by Pythagoras' Theorem,

${\text{OA}}^2=4^2+4^2=2\times4^2$ or $32$,

So $\text{OA}=\sqrt{32}=5.657$ or $4\sqrt2$.

Now, there are various different possible methods.




Using the area of a triangle formula

Area = $\frac12$ base x height
         = $\frac12$ OB x $y$ coordinate of A 
         = $\frac12$ x $4\sqrt2$ x 4 
         = $8\sqrt2$ 
 

Using horizontal and vertical triangles and rectangles
 
The yellow and blue triangles are drawn to make a rectangle with the red triangle. The length of the rectangle is OB plus the $x$ coordinate of A, so it is $4+4\sqrt2$ or $4+5.66=9.657$

The height of the rectangle is the $y$ coordinate of A, which is $4$.

So the area of the rectangle is $4(4+4\sqrt2)=16+16\sqrt2$ square units, or $4\times9.657=38.63$ square units.

The area of the yellow triangle is half of the area of the rectangle, so the area of the red and blue triangles combined is also equal to half the area of the rectangle. That area is $(16+16\sqrt2)\div2=8+8\sqrt2$, or $38.63\div2=19.31$, square units.

The blue triangle has base $4$ and heght $4$, so its area is $\frac124\times4=8$ square units.

So the area of the red triangle is $8+8\sqrt2-8=8\sqrt2$, or $19.31-8=11.31$, square units.


Using trigonometry
 This triangle is perfect for the formula $\text{Area}=\frac12ab\sin{C}$, where:

$a=b=4\sqrt2$ or $5.657$, and $C=135^\circ$

So $\text{Area}=\frac12(4\sqrt2)^2\sin{135}=8\sqrt2$ square units.


Cutting up the triangle and rearranging the pieces
 



The triangle is isosceles, so the angles at A and B are equal. Since all of the angles add up to $180^\circ$, these angles must add up to $45^\circ$, or must be $22.5^\circ$ each.





Now imagine cutting the triangle in half along the dotted line, and then rotating the blue part, so that the two
 $22.5^\circ$ angles join up to make a $45^\circ$ angle, as shown.





Notice that the triangle is still isosceles, because the image of OA is the side sloping upwards from B.





Comparing this to the original position of A, notice that really it's just a translation, because of the $45^\circ$ angle formed. So the height of the new triangle is $4$ units.

The base of the new triangle is still OB, which is $4\sqrt2$ os $5.657$ units.

So the area of the new triangle is $\frac12\times4\times4\sqrt2=8\sqrt2$ or $\frac12\times4\times5.657=11.31$ square units.




What happens if you apply the formula $\text{Area}=\frac12ab\sin{C}$ to this new triangle? How does this compare to the answer you get if you use the trigonometry method above?
 

You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Bendy Quad

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo