Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tiled Floor

Age 11 to 14
ShortChallenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Solutions

Answer: 3025


The sequence of all floors

             

Even floors: 2 purple tiles per row (total number even)
Odd floors: 1 more purple tile than the previous floor (total number odd)
 

109 purple tiles
108 = 2$\times$54 so floor length 54 has 108 purple tiles
$\therefore$ floor length 55 has 108 + 1 = 109 purple tiles
Floor length 55 has 55$^2$ = 3025 tiles


The sequence of odd-sided floors
Each odd-sided floor contains the last odd-sided floor in the middle, outlined in blue.
               

4 purple tiles are added each time
Side length 2 longer each time

109 = 1 + 4$\times$?
      = 1 + 108
      = 1 + 4$\times$27

So side length = 1 + 2$\times$27 = 55

$\therefore$ total number of tiles = 55$^2$ = 3025


Finding the number of rows
There are 2 purple tiles on each row,
Except for the middle row which has 1 purple tile (on odd-sided floors)

109 tiles = 1 purple tile in the middle
                  + 108 purple tiles in pairs
              = 1 purple tile in the middle
                  + 54 pairs on 54 rows

$\therefore$ there are 1 + 54 = 55 rows
So there are 55$^2$ = 3025 tiles





You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Summing Consecutive Numbers

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

1 Step 2 Step

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo