Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Robotic Rotations

Age 11 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Ashlynn from ISF Academy in Hong Kong created all of the patterns:



 



For this picture, Ashylnn described which angles could have been used:
The smallest angle is 72$^\circ$
Multiples of 72$^\circ$ can also generate the same pattern



 Can the other patterns be made using more than one angle? Ashlynn said:
Yes. In this picture, a rotation angle of 20$^\circ$ generates 18 shapes.
Other angles that are multiples of 20 (but not multiples of 40, 60) can generate the same pattern. These are 100$^\circ$, 140$^\circ$, 220$^\circ$, 260$^\circ$



Notice that this works because 18$\times$20$^\circ$ = 360$^\circ$, which is a full circle. So after 18 rotations of 20$^\circ$ (so 18 shapes), we get back to where we started from.

To make fewer copies of the shape, we need an angle with a multiple of 360 earlier in its times table. For example, above, 5$\times$72$^\circ$=360$^\circ$, so 72$^\circ$ only generates 5 copies of the shape.

5$\times$144 = 720 = 2$\times$360, so again after 5 copies rotating through 144$^\circ$, you get back to where you started. That is why multiples of 72$^\circ$ work.

However, Ashlynn pointed out that some multiples of 20$^\circ$ generate 18 copies of the shape, but those which are multiples of 40$^\circ$ do not.
This is because, although 18$\times$40$^\circ$ = 720$^\circ$ which is 2 full circles, 9$\times$40$^\circ$ = 360$^\circ$. So after just 9 copies, the robot gets back to where it started from and begins repeating the same shapes on top of each other.

You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

N000ughty Thoughts

How many noughts are at the end of these giant numbers?

DOTS Division

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo