Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Folded Number Line

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Teachers' Resources

I made a number line from 0 to 20 and folded it as shown below:



I folded it along the 4 and the 8 so that the 0 is on top of the 8 and the 4 is on top of the 12.




I then folded it along the 12 and the 16 so that now the 0 is on top of 8 which is on top of 16 and the 4 is on top of the 12 which is on top of the 20.


 




I ended up with some stacks of numbers that are on top of each other.

For example:
  • 1, 7, 9, 15 and 17 make a stack which has total of 49.
  • The stack made of 0, 8 and 16 has a total of 24.
  • The stack made of 3, 5, 11, 13 and 19 has a total of 51.
We will be focusing on totals made in this way (like 49, 24 and 51 above). 
 

The challenges below involve varying the length of the number line. However, you must always start with 0 and each folded section must be the same length. There must always be at least one fold in the number line and folds must go through a number.

 

Challenge 1

Find three different ways to get a 'stack total' of 36 using lengths of 21 to 36 inclusive, showing exactly how you fold the number lines.  
 

Challenge 2

Find as many ways as you can to get a 'stack total' of 48 using lengths of 21 to 36 inclusive, again showing exactly how you fold the number lines.
 

Challenge 3

Now using lengths from 21 to 50 inclusive, find a length which contains all the 'stack totals' of 69, 70 and 71 when folded.

This sheet contains a copy of the task.
 

You may also like

Prompt Cards

These two group activities use mathematical reasoning - one is numerical, one geometric.

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Exploring Wild & Wonderful Number Patterns

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo