Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Fraction of a Square

Age 11 to 14
ShortChallenge Level Yellow star
Secondary curriculum
  • Problem
  • Solutions

Drawing more little triangles
The length DE, which is the base of the triangle, fits 4 times along the side DC. So 4 copies of the triangle fit with their bases along DC:
 
The white unshaded triangles are congruent to the grey shaded triangles, so they have the same area. There are 4 shaded triangles and 4 unshaded triangles, so there are 8 triangles altogether.

So the area of each triangle is $\frac18$ of the area of the square.



Finding the area of the square and the triangle
Suppose the square has side length $1$, so that its area is $1$. We can do this because we don't need to know what the area of the triangle is as a number, we just want to know it as a fraction of the area of the square. And finding numbers as fractions of $1$ is easy - for example, $\frac12$ of $1$ is just $\frac12$.

Then the height of the triangle is $1$, since it is the side length of the square.

$4\times=1$. So the length DE, which is the base of the triangle, is $\frac14$

So the area of the triangle is $\frac12\times\frac14\times1=\frac12\times\frac14=\frac18$

And $\frac18$ as a fraction of $1$ is just $\frac18$. So the area of the triangle is $\frac18$ of the area of the square.
You can find more short problems, arranged by curriculum topic, in our short problems collection.

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo