Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Looking at Lego

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources
We had just a few solutions sent in for this activity, but they were excellent, thank you.

Lauren and Violet from Westridge Private School in the USA wrote: Ӭ

First, we counted the legos and the rows added up to 12 and 12 on the first picture, 24 and 24 on the second, and 72 on the third.
12 + 12 = 24. 24 + 24 = 48. 48 + 24 = 216. 216 $\div$ 3 = 72!

Melanie from St Adrians RC Primary School sent in the following:”¨
I started off by colour-coding the squares so it is much easier to know which one I'm talking about. The first thing I noticed was that the two rectangles in each picture had the same perimeter and area. Then I realised that in each picture the squares high was ascending by four studs vertically. Then I saw that to get from the first picture to the second one you had to do the equation 12 × 2 to both of the rectangles but to get from the second one to the third one you had to do the equation 24 × 3. Then for the division to get from the third picture to the second picture you had to do the calculation 72 ÷ 3 and to get from the second one to the first one you had to do 24 ÷ 2.

 

Children from St Monans Primary School in Scotland wrote the following (a larger version of their poster can be see by clicking on the picture:
As a class we did some maths talk around what we could see and our teacher jotted down some of our observations. We then worked in pairs to come up with as many different number sentences to describe some of the relationships we could see in the pictures. We decided to call the bumps on the lego "connectors".

We also labelled the pictures A, B and C so that we could even describe the relationships between the different pictures.

Finally we brought all our results together and explained our ideas to each other. We created a large display of all our results too with speech bubbles for our initial observations.



Maybe you could create another set of three pictures made from Lego rectangles of different sizes and explore further?

You may also like

Exploring Wild & Wonderful Number Patterns

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Sending Cards

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Dice and Spinner Numbers

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo