Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Ladybird Box

Age 5 to 11
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Ladybird Box

Some toy ladybirds are kept in this box which has 9 little square compartments.

 

 

 

 

Can you place six ladybirds into the box so that there are just two ladybirds in every column and every row?

 

 

 

You could try this interactivity.

 

 


 

 


Printable NRICH Roadshow Resource.

Why do this problem?

This problem requires both spatial and number understanding. It fits well with work on pairs and counting by twos. To understand the problem, the children will need to be comfortable with the idea that the $3$ by $3$ grid represents a top view of the nine-hole box. They will also need to be familiar with the meaning of rows and columns. The problem provides a good opportunity for developing positional language and utilising ordinal numbers. For example: "I put a ladybird in the middle of the second row" or "Go across three then down one". It is also a good context in which to discuss what makes one solution different from another.

 

Possible approach

 

You could place some ladybirds in the box in some way using the interactivity and invite children to describe the positions of the ladybirds. This will give an opportunity for the class to come to an agreement about good ways to describe each 'cell' and to check the meaning of words such as 'row' and 'column'. You could then introduce the problem and encourage the children to work on it individually or in pairs. They could use a prepared $3$ by $3$ grid and six counters or the grid and ladybirds from this sheet.

 

When someone finds a solution quietly ask him/her to explain why it is correct, then have him/her draw the solution onto a grid. Invite him/her to find another way to do it. This could lead to a plenary discussion comparing the different solutions. You can encourage learners to decide what makes a solution different from another one - how about rotating the grid and mirror reversals of solutions?

 

 

To extend the opportunity for developing positional language, the $3$ by $3$ grid could be marked out with chalk on the floor or playground, and children used as the ladybirds. Children could take turns in giving instructions for the movement of the ladybirds until a solution has been formed.

 

 

Key questions

 

How many counters/ladybirds have you in this row? In this column?

Which row and which column can still have a second counter/ladybird?

Possible extension

Children could be encouraged to find all possible solutions and explain why they are sure they have found them all.

Possible support

You could encourage children to start by placing just four counters then seeing which row and which column have less than two counters in them.


 

You may also like

Prompt Cards

These two group activities use mathematical reasoning - one is numerical, one geometric.

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Exploring Wild & Wonderful Number Patterns

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo