Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Terminating or Not

Age 11 to 14
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Terminating or Not printable sheet
 

A terminating decimal is a decimal which has a finite number of decimal places, such as 0.25, 0.047, or 0.7734

Take a look at the fractions below. 

$$\frac23 \qquad \frac45 \qquad \frac{17}{50} \qquad \frac3{16} $$ $$\frac7{12} \qquad \frac58 \qquad \frac{11}{14} \qquad \frac8{15}$$

Which ones do you think can be written as a terminating decimal? 

Once you've made your predictions, convert the fractions to decimals.

Click below to check which ones terminate.

Four of the fractions can be written as terminating decimals: $$\frac45=\frac8{10}=0.8 $$ $$\frac{17}{50}=\frac{34}{100}=0.34$$ $$\frac{3}{16}=\frac{1875}{10000}=0.1875$$ $$\frac58=\frac{625}{1000}=0.625$$ The remaining four fractions can be written as recurring decimals, with a repeating pattern that goes on forever.

I wonder whether there is a quick way to decide whether a fraction can be written as a terminating decimal...

Choose some fractions, convert them to decimals, and write down the fractions whose decimals terminate. 
What do they have in common?

Can you explain a method you could use to identify fractions which can be written as terminating decimals?

 

Next you might like to explore recurring decimals in the problem Repetitiously.

You may also be interested in the other problems in our Comparing and Matching Feature.

You may also like

Matching Fractions, Decimals and Percentages

Can you match pairs of fractions, decimals and percentages, and beat your previous scores?

Sept 03

What is the last digit of the number 1 / 5^903 ?

Too Close to Call

Weekly Problem 24 - 2012
Can you put these very close fractions into order?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo