Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Curvy Equation

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

Sketch the graph of the function $\text{h}$, where:

$$ \text{h}(x) = \frac {\ln x} x, \quad (x>0) $$

Some things you could think about when sketching a graph:
  • Are there any values of $x$ for which the function is undefined?
  • What happens as $x$ gets really large?
  • What happens as $x$ gets close to 0?
  • Can you find the gradient of the function? What does this tell you?
You might want to think about these in a different order, for example knowing the gradient may help you work out how the function behaves for large (or small) $x$.

 

Hence, or otherwise, find all pairs of distinct positive integers $m$ and $n$ which satisfy the equation:$$n^m=m^n $$

"Hence" means that the previous part of the question should be useful in some way.
Does the function $\text{h}(x)=\frac {\ln x} x$ suggest anything you could do to the equation $n^m=m^n$?
Can you rearrange the equation so that $n$ is on one side and $m$ is on the other?
If you wanted to find two values such that $\text{f}(a) = \text{f} (b)$, how could you use a graph of $y=\text{f}(x)$ to help?

 

STEP Mathematics I, 1988, Q1. Question reproduced by kind permission of Cambridge Assessment Group Archives. The question remains Copyright University of Cambridge Local Examinations Syndicate ("UCLES"), All rights reserved.

 

You may also like

Digital Equation

Can you find a three digit number which is equal to the sum of the hundreds digit, the square of the tens digit and the cube of the units digit?

Euler's Totient Function

How many numbers are there less than $n$ which have no common factors with $n$?

Frosty the Snowman

Frosty the Snowman is melting. Can you use your knowledge of differential equations to find out how his volume changes as he shrinks?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo