Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Frosty Is Melting!

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

When Frosty is half his initial height, show that the ratio of his volume to his initial volume is 37 : 224 

Ziyao from Garden International School in Malaysia, Jaeuk from Brighton College Abu Dhabi in the UAE and Callum from Ilkley Grammar school in the UK used a similar method to solve this problem. This is Ziyao's work:

Note that the formula for the volume of a sphere will come in very handy: $\frac43\pi r^3$

In the first question, Frosty has melted to half of his original height. It is given that the radius of the snowballs decreases by the same amount, so to get the radius of the spheres at half height we do the following below: 

The height is $2R\times2+3R\times2=10R.$  $10R\div2=5R$ and so the height has decreased by $5R.$ Therefore each sphere’s diameter has decreased by $5R\div2=2.5R$ according to the information in the quotation. The radii of the spheres after the height has decreased by $\frac12$ will be $\frac{4R - 2.5R}2=0.75R,$ $\frac{6R - 2.5R}2=1.75R.$ 

Calculating the volumes

The original volume [of the smaller snowball] is $8R^3\times\frac43\times\pi=32R^3\frac\pi3$ (applying the formula for the volume of a sphere)
[The original volume of the larger snowball is] $27R^3\times\frac43\times\pi=36R^3\pi$
$\dfrac{32R^3\pi}3+\dfrac{108R^3\pi}3=\dfrac{140R^3\pi}3$

The volume when the height has decreased by $\frac12$: 
$\left(\frac34R\right)^3\times\frac43\times\pi=1\times\left(\frac34\right)^2R^3\times\pi=\dfrac{9R^3\pi}{16},$ (again, applying the formula for the volume of a sphere)
$\left(\frac74R\right)^3\times\frac43\times\pi=\dfrac{343R^3\pi}{64}\times\frac43\times\pi=\dfrac{343R^3\pi}{48},$
and $\dfrac{9R^3\pi}{16}+\dfrac{343R^3\pi}{48}=\dfrac{27R^3\pi}{48}+\dfrac{343R^3\pi}{48}=\dfrac{370R^3\pi}{48}$


The final ratio

The ratio is $\dfrac{370R^3\pi}{48}:\dfrac{140R^3\pi}3$ 
multiply both sides by $48$ to get $370R^3\pi:2240R^3\pi$
divide both sides by $R^3\pi$ to get $370:2240$
and finally, divide by $10$ on both sides to get $37:224$
 

J from EIGCDN in Switzerland and Yonwoo solved the problem by writing a formula for Frosty's height. This is J's work:

The initial height of the snowman is $2\times2R+2\times3R$ (sum of diameters) which is equal to $10R.$

To find the initial volume, we simply substitute the values $2R$ and $3R$ into the general formula:

$\frac43\pi(2R)^3+\frac43\pi(3R)^3=\frac43\pi(8R^3+27R^3)=\frac43\pi(35R^3)=\frac{140}3\pi R^3$

$5R$ is half of the initial snowman's height. Let $D$ be the amount each radius decreases by every minute. After $x$ minutes, the top snowball has a radius of $2R-xD$ and the bottom one has a radius of $3R-xD.$ 

Using these facts, we can create a formula for the height of the snowman after $x$ minutes:

$2\times(2R-xD)+2\times(3R-xD)=4R-2xD+6R-2xD=10R-4xD$

At the point where the total height is $5R,$ we get $10R-4xD=5R\Rightarrow4xD=5R\Rightarrow xD=\frac54R.$ By plugging this into the expressions for the top and bottom radii, we get:

Top radius $=2R-\frac54R=\frac34R$
Bottom radius $=3R-\frac54R=\frac74R$

Next, we can find the volumes of the snowballs.

From here, J's solution is the same as Ziyao's solution above.

What is this ratio when Frosty is one-tenth of his initial height?

J continued using the same formula, but it led to some very dangerous maths:

So far, we have built up quite a few formulae; now, we can finally apply them.

The snowman's height is $R$ when the height reaches one-tenth of the initial height, $10R.$ Remember that the formula for the height after $x$ minutes is $10R-4xD$ so $10R-4xD=R\Rightarrow4xD=9R\Rightarrow xD=\frac94R.$

We can now substitute into the formulae for top / bottom radii:

Top radius $=2R-\frac94R=-\frac14R$
Bottom radius $=3R-\frac94R=\frac34R$

This part seems a little weird. Negative magnitudes are nonexistent. However, we can proceed because the volume of the bottom snowball is greater than the top radius and so the total volume is still positive. Also note that in this scenario, the top snowball has already melted.

The total volume is:

$\frac43\pi\left(-\frac1{64}R^3+\frac{27}{64}R^3\right)=\frac43\pi\left(\frac{13}{32}R^3\right)=\frac{52}{96}\pi R^3=\frac{13}{24}\pi R^3$

As usual, we ignore $\pi R^3$ and focus on the other coefficient. We compare $\frac{13}{24}$ and $\frac{140}{3}$; by scaling them up to the same denominator, we get $\frac{13}{24}$ and $\frac{1120}{24}.$ The ratio therefore is $13 : 1120$ which cannot be simplified further.

Jaeuk and Yonwoo also realised that the smaller snowball would have melted completely, and they adjusted their calculations to get correct answers. This is Jaeuk's work (click here to see a larger version):

 

 

 

 

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo