Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Minimal Connector

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

There are a variety of contexts in which it is important to be able to minimise the length of a network joining some fixed points, in order to minimise the use of resources or energy.  This might be trying to create a gas pipeline connecting towns or creating a fibre-optic cable network.  

Points on the network do not need to be connected directly to each other, but you must be able to get from any point to any other point on the network. The smaller the network is, the greater the environmental saving and the greater the efficiency of the system.

Imagine four points (they could be houses, or towns, or data points) arranged at the corners of a square of side length 10km.

Here are two possible ways to connect the four points:

What is the total length of the network in each case?  Can you find a better solution?

What is the minimum network that can connect them?
(A solution of less than 28km is possible!)

 

Alf, Charlie and Claire thought about this problem

Charlie took inspiration from honeycombs to wonder if hexagons might be helpful.  Click the button below to see what Charlie was thinking about.  Can you use this to find a shorter path?

Claire remembered seeing bubbles made inside cubes, and thought that the minimum network might look similar.  Click the button below to see what she thought the best solution might look like.

You can find out how to make bubbles inside cubes with this video from The Science Museum Group.

Both Alf and Claire used this idea to try and answer the question.  

Alf thought that he might be able to use a spreadsheet to help him find a better solution.  Click the button below to see his first spreadsheet.  Can you use this idea to find the best solution?

Claire has learnt some Calculus techniques and thought she could use this to prove that she had the minimum length.  If you have learnt some Calculus you might like to try to recreate her solution.

Claire started by finding an expression for the total length, $L$, of the network in terms of $x$.
Then she differentiated this to find $\frac{\mathrm{d} L}{\mathrm {d} x}$, and used this to find the value of $x$ where this is equal to 0.
Then she used this value of $x$ to find the minimum value of $L$.
Finally she used Desmos to sketch a graph of $L$ to check her answer.

Do you get the same answer using all three approaches? Which approach do you prefer?

Once you have tried this problem, you might like to watch this video from James Grime where he uses bubble mixture to find the solution to this problem.  He also shows how this can be adapted to other problems!

This problem is based on a problem from the book Teaching Mathematics as if the Planet Matters

 

 

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo