Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Dodecawhat

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Thank you Andrei from School No. 205, Bucharest, Romania for this solution.1

1. The angles of a regular pentagon must all be 108 °.
a) First I looked at the possibility of working with A4 paper.

In the problem, I have to put A over O. So, triangles ARF and ORF are congruent, AM = MO and AO is perpendicular on FR.

As before, I note the smaller side of the paper (AB), with length x. Consequently, AD is $x\sqrt2$.

As P is on the middle of AD, AP = $x\sqrt2/2$. OP is x/2.

Triangle AOP is a right-angled triangle. As AP is parallel to EO, angles PAO and EOA are equal and, from the ratio of the side lengths of the paper, we get angle PAO = $tan^{-1}$ $(1\sqrt2)$ = 35.264 degrees.

As triangle MEO is also a right-angled triangle, angle EOM + angle MEO = $90^{\circ}$, so angle MEO is 54.736 degrees (to 3 decimal places).

But the figures (rectangle and then the pentagon) are symmetrical in respect to EO, so angle RES is two times angle MEO.

Angle RES = 2 $*$ MEO = $109.472^{\circ}$

The result is not $108^{\circ}$. The error is not so important, it is of the order of 1.4%

$${ {109.5^{\circ} - 108^{\circ}\over 108^{\circ}} = 1.4\%}$$

b) Now I have to calculate the new dimensions of the paper, so that I obtain a regular pentagon.

To make a regular pentagon in this way the ratio of the side lengths of the paper would have to be equal to tan 540 , that is in the ratio 1.376 to 1 (to 4 significant figures) rather than 1.414 to 1 as in A4 paper.

In the figure angle RES has a measure of 108 °, XY is parallel to PQ and XK and YL are angle bisectors of angles RXY and SYX respectively.

Angles EXY and EYX are both equal to 36 °. Consequently angles RXY and XYS both have a measure of 144 °. Now, I calculate angle KXY:

KXY = RXY/2 = 72 °

Now, I calculate angles EXK and EYL (the angles of the pentagon):

EXK = EYL = 72 ° + 36 ° = 108 °

I observe that the other two remaining angles are also congruent (by symmetry), both having a measure of 108 °.

So, I proved that in this case I obtain a regular pentagon.

2 . The ratio of the lengths of A4 paper is $\sqrt2$ to $1$.
So, let the side of an A4 paper have lengths $x$ and $x\sqrt 2$.

Now, I write the lengths of the sides: $AB = x$ $AD =(x\sqrt{2}) $ $AE = (x\sqrt{2/2}) $
The ratio of sides EF to AE is: $EF/AE = x/ (x\sqrt 2/2)= 2/\sqrt2 = \sqrt2$

Continuing is the same manner, I observe that the smaller and the bigger A-paper all have the same proportions of length.



You may also like

Proximity

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

Platonic Planet

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

Three Cubes

Can you work out the dimensions of the three cubes?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo