Or search by topic
Buying a Balloon printable sheet
Lola bought a balloon at the circus. She paid for it using six coins.
How much might the balloon have cost?
What is the largest amount Lola could have paid?
What is the smallest amount Lola could have paid?
Imagine that Lola has two different types of coin.
How much might the balloon cost now?
Can you find all the possible prices? How do you know you have found them all?
Which of your answers seems a reasonable amount to pay for a balloon?
This problem offers an opportunity for learners to use numerical operations (addition, subtraction and possibly multiplication) and can be used to highlight ways of working systematically.
The problem could be introduced through story and a real balloon can also be used to engage the children. Children can be asked if they have had balloons at home, the types of occasions when balloons are used as decorations, where they can be purchased and how much they might cost.
Give children time to work on the problem for a few minutes with large sheets of paper available for them to record any solutions. Then invite some children to suggest some different amounts, checking that they can be made with exactly six coins. You could ask what the largest amount Lolla could have paid was, and the smallest amount. It might be appropriate for you to narrow down the problem at this stage so that you are able to emphasise ways of working systematically, so challenge the class to find ALL the different amounts which could be made with two types of coin. You could suggest that everyone tries using 1p and 2p coins first. Invite learners to record their ways on strips of paper (each way on a separate strip) as this will make it easier later.
Having given the group time to work on this, draw them together to find out the different amounts they have made. Ask children to come and stick a strip on the board so you begin to collate some different combinations. Once you have quite a few (there are seven altogether), ask the children how they know whether or not they have all the possible solutions. At this stage, you may be able to highlight some methods that you noticed while the children were working, and you can ask learners for their suggestions. Take up one of these (for example starting with all lowest value, then swapping one of those for the next value up, then swapping another lowest for another higher value etc.) and order the strips of paper to reflect this on the board. In this way, pupils will notice any gaps and having this modelled will help on future occasions.
You could then challenge different groups of children to work on a different pair of coins so that the task is shared between the class. Can they tell you how many different solutions there will be for each pair of coins?
Children could go on to find all the possible combinations of six coins in a similar way if, for example, three different coins can be used.
Having plastic (or real) coins available will help the children identify, name and sort to find possible answers.
An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.
Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?