Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Cube Roots

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We have to find values of c - d where:

$\begin{eqnarray} c & = &{(5\sqrt{2}+7)}^{\frac{1}{3}} \\ d & = &{(5\sqrt{2}-7)}^{\frac{1}{3}} \end{eqnarray}$

Looking first for real roots, note that

$ (5\sqrt{2}+7)(5\sqrt{2}-7) = 50-49 = 1 $ so $c^3d^3=1 $ and hence $cd=1$ .

Also

$c^3-d^3=14$ giving
$\begin{eqnarray} (c-d)^3 & = & c^3 - d^3 - 3cd(c-d) \\ & = & 14-3(c-3) \end{eqnarray}$

So

$c-d$ satisfies $x^3+3x-14=0,$ and this has only one real root $x=2$ . \[ x^3+3x-14 = (x-2)(x^2+2x+7) = 0 \] . $x^2+2x+7=0$ has complex roots $-1+i\sqrt{6}$ and $-1-i\sqrt{6}$ .

Hence

$x=c-d=2$ is the only real value of the given expression.

There will be altogether 9 complex values of

$c-d$ because c can take 3 values and d can take 3 values. Denoting the cube roots of unity by 1, $\omega$ and $\omega^2$ , where $\omega = \cos{2\pi/3} + i \sin{2\pi/3} $ , the nine required values are given by: $2, 2\omega, \omega^2, (-1+ i\sqrt{6}), (-1+i\sqrt{6})\omega, (-1+i\sqrt{6})\omega^2, (-1-i\sqrt{6}), (-1-i\sqrt{6})\omega, (-1-i\sqrt{6})\omega^2 $

Diagram $(5\sqrt{2}+7)^\frac{1}{3} - (5\sqrt{2} - 7)^{\frac{1}{3}}$
$\begin{eqnarray} b_1& =& 2\omega \\ b_2& =& (-1-i\sqrt{6})\omega^2 \\ b_3 & = & (-1+i\sqrt{6}) \\ c_1& = & 2\omega^2 \\ c_2 & = & (-1-i\sqrt{6}) \\ c_3 & = & (-1+i\sqrt{6}) \end{eqnarray}$

Neil of Madras College found the complex values and dicovered some beautiful patterns when he plotted them in the complex plane. Neil's discoveries can be generalised to a 1/3 - b 1/3 for any real or complex numbers a and b, and from cube roots to n th . roots.

In order to find patterns similar to the ones discovered by Neil, but in a simpler situation, and to see how his ideas can be generalised, you may like to plot the twelve values of 8 1/3 + 81 1/4 in the complex plane.


You may also like

Roots and Coefficients

If xyz = 1 and x+y+z =1/x + 1/y + 1/z show that at least one of these numbers must be 1. Now for the complexity! When are the other numbers real and when are they complex?

Target Six

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

8 Methods for Three by One

This problem in geometry has been solved in no less than EIGHT ways by a pair of students. How would you solve it? How many of their solutions can you follow? How are they the same or different? Which do you like best?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo