Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Xtra

Age 14 to 18
Challenge Level Yellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Two solutions to this problem have been forthcoming from different students at the same school - Madras College. Thank you to Mike and Euan who used lots of trigonometry as well as to Thom who likewise resorted to double angles and the cosine rule and reduced the problem to solving a quadratic equation. Thom was also able to show the significance of the two roots.

Diagram of the problem
$$\eqalign{ \beta &=& \frac{\pi}{6} - \frac{\alpha}{2} \\ \cos\beta &=& \frac{\sqrt{3}}{2}\cdot\frac{3\sqrt{3}}{2\sqrt{7}} + \frac{1}{2}\cdot\frac{1}{2\sqrt{7}} \\ \; &=& \frac{10}{4\sqrt{7}} = \frac{5}{2\sqrt{7}}}$$
Diagram showing cos and sin of alpha/2
Using the cosine rule on $\triangle ABP$ $$\eqalign{ 4 &=& x^2 + 7 - 2x\sqrt{7}\cos\beta \\ \; &=& x^2 + 7 - 5x}$$ Therefore $x^2 - 5x + 3 = 0$ $$x = \frac{5\pm\sqrt{13}}{2}$$ Both solutions satisfy the triangle inequality for $\triangle ABP$, namely $\sqrt{7} - 2 < x < \sqrt{7} + 2$. The diagram can be redrawn to show the trapezium $BPQC$ flipped down producing the much smaller equilateral triangle of side $x$ units.
Diagram for the smaller value of < i> x< /i>

A solution which just needs Pythagoras's Theorem was sent in by Ewan from King Edward VII School, Sheffield. See if you can work it out from the diagram below, then reveal the hidden text to check your answer.
 
The diagram shows the median AU at point A cutting the triangle in half. The length AU is in two parts, $y$ and $z$. Since the triangle is equilateral, $y+z=\frac{\sqrt 3}{2}x$. (You may like to prove this e.g. by trigonometry) To work out $y$ use Pythagoras's Theorem:
\begin{align}
y^2+\left(\frac{1}{2}\right)^2 &=\left(\sqrt 7\right)^2 \\
y^2 &= \frac{27}{4} \\
y &= \frac{3\sqrt 3}{2} 
\end{align}
and use $y+z=\frac{\sqrt 3}{2}x$ to give $z = (x-3)\frac{\sqrt 3}{2}$.

Then more Pythagoras's Theorem and our values found above give
\begin{align}
z^2+\left(\frac{x}{2} - \frac{1}{2}\right)^2 &=2^2 \\
\frac{3(x-3)^2}{4} + \frac{(x-1)^2}{4} = 4
\end{align}
which simplifies to get the same equation as Thom and the others: $x^2 -5x + 3 = 0$.

What a simple solution, Well done!

You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Baby Circle

A small circle fits between two touching circles so that all three circles touch each other and have a common tangent? What is the exact radius of the smallest circle?

Logosquares

Ten squares form regular rings either with adjacent or opposite vertices touching. Calculate the inner and outer radii of the rings that surround the squares.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo