Or search by topic
Show that among the interior angles of a convex polygon there cannot be more than three acute angles.
Show that if a convex polygon has more than six sides, then at least one of the sides has an obtuse angle at both ends.
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!
15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?