Or search by topic
1) Can you draw a straight line across the centre of a clock face so that the numbers on both sides of the line have the same total? Can you do this another way?
Andy, Courtney, Lukas and others solved this by looking at the sum of the numbers on the clock face, and then trial and error. Lauren writes;
By adding up all the numbers on the clock face, I got the total 78. I then divided 78 by 2 as we are dividing the clock face into two equal parts. This equals 39. Then by adding up six consecutive numbers around the clock face I found that the line should go between 9 and 10, and 3 and 4. As 4+5+6+7+8+9=10+11+12+1+2+3=39.
A group from Archers Court in Dover solved the problem using an algebraic method. This method also helps the second question, on whether there is another solution.
The sum of all the numbers on the clock face is 78, so you want to find six consecutive numbers that add up to 78\div2=39. If we call the first number n, then the sum of six consecutive numbers is n+(n+1)+(n+2)+(n+3)+(n+4)+(n+5)=39. By now gathering terms we get the equation 6n+15=39 So 6n=24 and n=4 Then the six consecutive numbers are 4,5,6,7,8,9 and so the line runs from after 9 to after 3. As there was only one solution to the algebraic equation, then this is the only solution to the problem.
2) Can you draw two lines (like the hands of the clock) to divide the clock face so that the total of the numbers on one side of the lines is twice the total on the other side? Can you do this in another way?
Junnrui Hu wrote;
I realized that the total should be divided into three parts, so the two of the parts together would then be twice as large as the other part. 78\div3=26. I then had to find consecutive numbers that added to 26. By choosing a number and adding up around the clock from it until I reached 26 or went over and missed 26, I found that 11+12+1+2=5+6+7+8=26. So the line can go from between
10 and 11 to between 2 and 3 or from between 4 and 5 to between 8 and 9.
3) Can you divide the clock face so that that the total on one side of the lines is five times more than the total on the other side? Can you do this in another way?
Harry from the Beacon School solved this using an algebraic method.
The sum of all the numbers is 78. If we call x the total on the small side, then 5x+x=78, so 6x=78 and x=13. So the sum on the small side is 13. Now we must find consecutive numbers that add up to 13. These are only 12+1 and 6+7. So there are two places for the line, from after 11 to after 1 and from after 5 to after 7.
4) Can you draw two lines to divide the numbers so that the total of the numbers on each side of the lines are both multiples of six? In how many different ways can you do this?
Lily and Amy from Bow Brickhill School solved this problem using a method of trial and error, by adding consecutive numbers until they totaled a multiple of 6. They found that 9+10+11+12=42 (7\times 6), 1+2+3=6 (1\times 6), 4+5+6+7+8=30 (5\times 6). Here they have found three groups that sum to a multiple of six, so any combination of these will work, say having the lines after 8 and after 3, or after 8 and after 12, or after 12 and after 3.
Susanna from St George's also used a trial and error method to find several solutions.
Junnrui Hu wrote;
5) Can you draw two lines so that the numbers on each side add to a prime number? Can you do this in another way?
Junnrui Hu answers this;
Well done to Junnrui Hu for his excellent answers, attempting every single question. Congratulations also to Ian who solved every question using just his knowledge of triangular and prime numbers.
The last question remains open to anyone who wishes to investigate it, can you find any other interesting ways to group the numbers on a clock face by drawing two lines?
EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.
This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?
If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?