Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

A Square of Numbers

Age 7 to 11
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

A Square of Numbers

Can you put the numbers $1$ to $8$ into the circles so that the four calculations are correct?

 

 

square of sums

 

You might like to use this interactivity:

 

 

 


 

 

 

 

Why do this problem?

 

This problem entices learners as it is straight-forward to understand what is required. However it is not as simple as it looks! It will test children's understanding of the properties of numbers and the operations of addition, subtraction, multiplication and division. It also presents a good opportunity to talk about working in a systematic way.
 

Possible approach

It would be a good idea to have the problem on the interactive whiteboard, or for you to draw it on the board, so that it can be referred to easily. Pose the challenge orally for the class and then give them some time to talk in pairs about how they might go about solving it. Share a few ideas among the whole group, listening out for those that indicate clear reasons for their suggestions. You might begin to list some possibilities for each circle based on what the class suggest. Learners could then have a go, either on mini-whiteboards, or using this sheet of the problem for working on. Explain that you will want to know how they went about solving it, not just the answer, so you could ask them to keep a record of what they try.

 

In the plenary, invite some children to describe what they did to solve the problem, emphasising that there isn't one right way to go about it, but perhaps there are some ways that are more efficient than others? (You could label the circles with letters, or colour them using different colours, to help discussion.) Many children might have started with a trial and improvement approach, which is very helpful, whereas others might have combined this with a system, for example trying the largest number in a particular circle first, then the next largest etc.

 

 

Key questions

 

Which numbers could go here? Why?
Where could the two largest even numbers go? Why?
Where could the $1$ go? Why?
How will you keep track of what you have tried?

 

 

Possible extension

 

 

Some children will enjoy finding all the different solutions and justifying that they haven't missed any out. You could also challenge them to make a similar problem which uses different numbers or puts the operations around a square in a different order.

 

Possible support

Having a copy of the problem on this sheet  will be helpful for many children and giving them numbered counters to move around makes it easy to correct mistakes.

 

You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Domino Square

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo