Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

What an Odd Fact(or)

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Thanks to Steve of Bayridge Secondary School for the following solution. Solutions were also recieved from Hin-Tai from Bourne Grammar School, Junwei from BHASVIC, Josh of Lawrence High School, Stephanie and Stephen of Knowles Hill School, Andrei of School 205, Bucharest and Robert and Josh from Highgate school.

Well done to all of you but there is more. What powers and what numbers will this pattern work for? Charlotte of The Mount School, York thinks it works for all powers.

Show that $1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99}$ is divisible by 5.

For each base (1, 2, 3, 4 or 5), there exists a pattern between the value of the exponent, and the first place value.
For $n ^ 1$, the first place value is always 1.

Let $n$ be a natural number {1, 2, 3, ...}
n
$1 ^ n$ $2 ^ n$ $3 ^ n$ $4 ^ n$ $5 ^ n$
1
1
2
3
4
5
2
1
4
9
16
25
3
1
8
27
64
125
4
1
16
81
256
625
5
1
32
243
...4
...5
6
1
64
729
...6
...5
7
1
128
...7
...4
...5
8
1
256
...1
...6
...5

$1 ^ n$

$1 ^ n$ mod 10 = 1

$2 ^ n$

if (n mod 4) = 0 then $2 ^ n$ mod 10 = 6

if (n mod 4) = 1 then$2 ^ n$ mod 10 = 2
if (n mod 4) = 2 then$2 ^ n$ mod 10 = 4
if (n mod 4) = 3 then$2 ^ n$ mod 10 = 8


$3 ^ n$

if (n mod 4) = 0 then $3 ^ n$ mod 10 = 1
if (n mod 4) = 1 then $3 ^ n$ mod 10 = 3
if (n mod 4) = 2 then $3 ^ n$ mod 10 = 9
if (n mod 4) = 3 then $3 ^ n$ mod 10 = 7

$4 ^ n$

if (n mod 2) = 0 then $4 ^ n$ mod 10 = 6
if (n mod 2) = 1 then $4 ^ n$ mod 10 = 4

$5 ^ n$

$5 ^ n$ mod 10 = 5

Let n = 99

n mod 4 = 3
n mod 2 = 1

$1^{99}$= 1
$2^{99}$ = ...8
$3^{99}$ = ...7
$4^{99}$ = ...4
$5^{99}$ = ...5
-------------
...15

If the first place value of any natural number greater than 0 is equal to 0 or 5, then the number is a multiple of 5.

Let $m$ be a natural number greater than, or equal to 5.

$\{m \ \mid \ m \geq 5, m \in N \}$

if m mod 10 = 0, 5, then m is divisible by 5

Example:

5 mod 5 = 0
90 mod 5 = 0
5 mod 10 = 5
90 mod 10 = 0

$1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99} mod 10 = 5$

therefore $1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99}$ is divisible by 5.


You may also like

Adding All Nine

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some other possibilities for yourself!

Counting Factors

Is there an efficient way to work out how many factors a large number has?

Repeaters

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo