Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

How Many Miles to Go?

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We received very contrasting approaches to solving this problem. Rami from Pierre Laporte School approached this in stages:

Well, you start with 4631 & 173.3

We'll add 2 to that, to get "3s" (in the far right hand columns): 4633 & 175.3

We'll add 300 to that one, to get "4s" (in the far left hand columns): 4933 & 475.3

We add 20 to that one: 4953 & 495.3

There's your answer ... 4953 & 495.3

Robert Stabler from Ardingly College Junior School used very similar reasoning:

In this problem I decided to alter the milometer until each single unit was the same as the trip meter's.

First I added 2 miles so they both ended in three.

I then added 20 so they both ended in 53.

Then I added 300 which made the milometer and trip meter end in 953.

They were now the same.

I added the numbers I had used up to 322.

Andrei Lazanu from School No. 205 in Bucharest realised that the two numbers would contain the same digits when the number on the milometer was ten times larger than the number on the trip meter, and then went on to generalise. This is how he arrived at the solution:

When you go a distance x, both the milometer and the trip meter will go a distance x.

The trip meter will need to have a value that is ten times smaller than the milometer, so I have:

4631 + x = 10(173.3 + x)
4631 + x = 1733 + 10x
9x = 2898
x =322 (miles)

So, you have to travel another 322 miles for the two numbers to have the same digits in the same order.


In the second situation, I have:

4632 + x = 10(173.3 + x)
4632 + x = 1733 + 10x
9x = 2899
2899 isn't divisible by 9.


In general, if m is the value indicated by the milometer and t the value indicated by the trip meter and x the distance travelled after the measurement, the possibilities are:

m +x = t + x$\rightarrow$ m = t $\rightarrow$ the first trip of the car (very difficult and rare)
Any distance is possible.

m + x = 10(t + x) $\rightarrow$ m + x = 10t + 10x $\rightarrow$ 9x = m -10t
This is the most common possibility.
(m - 10t) must be divisible by 9.

Here are some possibilities that will lead to matching pairs:
m = 1653; t = 60.0 $\rightarrow$ x = 117 (miles)
m = 5330; t = 1.1 $\rightarrow$ x = 591 (miles)
m = 9442, t = 10.0 $\rightarrow$ x = 1038 (miles)

m + x = 100(t + x) $\rightarrow$ m + x = 100t + 100x $\rightarrow$ 99x = m -100t
(m - 100t) must be divisible by 99.

Here are two possibilities that will lead to matching pairs:
m = 596; t = 2.00 $\rightarrow$ x = 4 (miles)
m = 7758; t = 36.00 $\rightarrow$ x = 42 (miles)

m + x = 1000(t + x) $\rightarrow$ m + x = 1000t + 1000x = 999x = m - 1000t
This solution is very rare, as the result must be divisible by 999, t must be a small one-digit number.


You may also like

Consecutive Numbers

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Calendar Capers

Choose any three by three square of dates on a calendar page...

Days and Dates

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo