Or search by topic
The smallest triangle it is possibkle to draw has a base of 1 unit and a height of 1 unit. So the smallest area is $ \frac{1}{2} $ sq. unit.
There are an infinite number of triangles that can be drawn with these diagonals (see the problem "Shear Magic" )There are two ways of creating a triangle of area 1 sq and with a horizontal base:
Base 1 unit; height 2 units
or
Base 2 units and height 1 unit, again
For an area of 2 sq units there are three families of triangles with a hoirizontal base::
Base 1 unit and height 4 units
or
Base 2 units and height 2 units
or
Base 4 units and height 1 unit
For each family there are an infinite number of triangles
Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.
Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?