Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Tricky Track

Age 7 to 11
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Jacob from Fern Avenue Public School thought carefully about this problem:

To figure out the counter that wins most often, we first need to figure out the most common dice rolls.
There are $36$ different possible combinations. Here they are, in the format "First Die Roll - Second Die Roll - Total":
$1 - 1 - 2$
$1 - 2 - 3$
$1 - 3 - 4$
$1 - 4 - 5$
$1 - 5 - 6$
$1 - 6 - 7$
$2 - 1 - 3$
$2 - 2 - 4$
$2 - 3 - 5$
$2 - 4 - 6$
$2 - 5 - 7$
$2 - 6 - 8$
$3 - 1 - 4$
$3 - 2 - 5$
$3 - 3 - 6$
$3 - 4 - 7$
$3 - 5 - 8$
$3 - 6 - 9$
$4 - 1 - 5$
$4 - 2 - 6$
$4 - 3 - 7$
$4 - 4 - 8$
$4 - 5 - 9$
$4 - 6 - 10$
$5 - 1 - 6$
$5 - 2 - 7$
$5 - 3 - 8$
$5 - 4 - 9$
$5 - 5 - 10$
$5 - 6 - 11$
$6 - 1 - 7$
$6 - 2 - 8$
$6 - 3 - 9$
$6 - 4 - 10$
$6 - 5 - 11$
$6 - 6 - 12$

Number of appearances of $2$: $1$
Number of appearances of $3$: $2$
Number of appearances of $4$: $3$
Number of appearances of $5$: $4$
Number of appearances of $6$: $5$
Number of appearances of $7$: $6$
Number of appearances of $8$: $5$
Number of appearances of $9$: $4$
Number of appearances of $10$: $3$
Number of appearances of $11$: $2$
Number of appearances of $12$: $1$

Looking at all of the totals, we can see that $2$ appears once, $3$ twice, $4$ thrice, and so on until we get to $7$. At this point, the number of appearances starts to decrease. $8$ appears five times, $9$ four, and $12$ only once. We can see that $7$ appears most often, and is therefore most likely to win the race.

But why does $7$ appear most often? It is because there is no result for the first die rolled that excludes it as a result. If you look back at the table, you can see that no matter what is rolled on the first die, seven still has a $1$ in $6$ chance of being the result. This is not true for any other number. And this is why $7$ is the most common result.

What if the dice had seven faces? $7$ would no longer be the most common number, as a roll of $7$ on the first die would eliminate it as a result. Instead, $8$ is the most common, for the reasons mentioned above. If the dice had eight faces, then $9$ would be the most common. There is a pattern here: if two dice are being rolled, the most common result can be determined by adding $1$ to the number of faces each die has.

Very well done, Jacob. Here is another way to display the possible totals when rolling two $1-6$ dice:



1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12



Related Collections

  • Playing with Dice

You may also like

Roll These Dice

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

Stop or Dare

All you need for this game is a pack of cards. While you play the game, think about strategies that will increase your chances of winning.

Game of PIG - Sixes

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo