Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Inscribed in a Circle

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Imagine drawing a straight line from each vertex of the hexagon to the centre of the circle.

The hexagon is now split into six identical triangles.

The triangles are equilaterals. How do we know this?

The angle at the centre is ${360^o \over 6}=60^o$ and the two edges next to this vertex are radii so have length $1$. Because these two edges have the same length the angles at the remaining two vertices must be equal. Angles in a triangle add up to $180^o$ so all the angles must be $60^o$.

The area of a single triangle is
$$\mbox{Area of triangle} = {1\over 2} \times \mbox{height} \times \mbox{base}.$$
Consider one of the triangles making up the hexagon. Dropping a perpendicular from one of the points to the opposite edge and using Pythagoras' Theorem gives that the height of the triangle is ${\sqrt 3\over  2}$.

Therefore the area of one of the triangles is 
$$\mbox{Area of triangle} = {1\over 2} \times {\sqrt 3\over  2} \times 1={\sqrt 3\over  4}.$$
And the area of the hexagon is $6$ times this, which is ${3 \sqrt 3\over 2}$.

To find the area of the equilateral triangle, draw it on the same diagram as the first part. Notice that each edge of the large triangle cuts two of the smaller triangles and divides their area in half. Therefore the area of the equilateral triangle in the unit circle is half that of the hexagon, which is ${3\sqrt 3\over  4}$.





You may also like

Some(?) of the Parts

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

Ladder and Cube

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo