Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

N Is a Number

Age 11 to 14
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

We had many correct answers to this problem, including some well argued solutions from Thomas Wong (Reed High School, Sparks, Nevada, USA) and Stelios Serghiou (G.C.School of Careers).

Peter Simpson from Castell Alun School argued as follows:

The number must be odd because the holiday makers split into two group, with the car group one less than the walkers.

If N was 7 (or greater) the time delays would be greater than 59 minutes, the time for the car to travel to B (the walkers arrive in 60 minutes - N miles in an hour, the car arrives 1 minute earlier).

If N was 3 the distance would be 22km, but this would mean the holiday makers would split into 2 walkers and 1 car traveller, and as the problem states "they" for the car travellers the number of people in the car must be greater than 1.

Therefore N is 5, and the distance by road is 20km.

Momtchil Iliev from Drayton Manor School argued in a very similar way and added an explanation for how he calculated the distance by road:

Calculating Distance of road travelled by car

Time taken driving = 59 - (5) ² - 2(5)
= 59 - 25 - 10 = 24 minutes = 0.4 hours

Speed of travelling by car = 10N = 10(5) = 50 km/h

Distance of road = Speed of car x time taken travelling
= 50 x 0.4 = 20km

Harry also sent in his work on this problem:

Because each group has at least 2 people in it, and there is one more walker than person in the car, there must be at least 5 people, so $N\geq 5$.

The walkers walk $N$ km at $N$ km/hr, so take 1 hour, which is 60 minutes.

The people in the car drive $d$ km at $10N km/hr$, which takes $\frac{60d}{10N}$ minutes, and stop for $N+N^2+N$ minutes. This takes 60-1=59 minutes. So $\frac{60d}{10N}+N+N^2+N=59$, so $\frac{6d}{N}+2N+N^2=59$, so $d=\frac{59N-2N^2 -N^3}{6}$. If $N=6$, this gives 11/6, which is less than $N$, so that's not allowed, and since it's just going to get smaller and smaller, we must have $N< 6$. But $N\geq 5$, so $N=5$. So $d=20km$.

Well done to you all

You may also like

Walk and Ride

How far have these students walked by the time the teacher's car reaches them after their bus broke down?

Rolling Around

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Paradoxes

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo