Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Gosh Cosh

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

The hyperbolic trig functions $\cosh $ and $\sinh $ are defined by $$\eqalign { \cosh x &= {1\over 2}(e^x + e^{-x}) \cr \sinh x &= {1\over 2}(e^x - e^{-x}).}$$ Using the definitions sketch the graphs of $\cosh x$ and $\sinh x$ on one diagram and prove the hyperbolic trig identities $$\eqalign { \cosh^2 x - \sinh^2 x &=1 \cr \sinh 2x &= 2\sinh x \cosh x \cr \sinh (n+1)x &= \sinh nx \cosh x + \cosh nx \sinh x.}$$

Notice the strong resemblance of these formulae to standard trigonometrical identities. Using this similarity as a guide, investigate the properties of a 'hyperbolic tangent' function $tanh(x)$ defined by
$$\tanh(x)=\frac{\sinh(x)}{\cosh(x)}$$




NOTES AND BACKGROUND

Notice that the identities for hyperbolic functions that you have proved are very similar to the ordinary trigonometric identities. In fact there is a complete hyperbolic geometry with similar results to the trigonometric results in Euclidean geometry. We compare absolute values in the corresponding result for $\sin nx$ which is $|\sin nx|\leq n|\sin x|$ . This formula needs the absolute values because the function is periodic and takes negative values for some multiples of the angle. Notice that the inequality in $|\sin nx|\leq n|\sin x|$ goes the other way to the corresponding hyperbolic result. This is because $\cos x \leq 1$ for all $x$ whereas $\cosh x\geq 1$.


You may also like

Big, Bigger, Biggest

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Infinite Continued Fractions

In this article we are going to look at infinite continued fractions - continued fractions that do not terminate.

Complex Sine

Solve the equation sin z = 2 for complex z. You only need the formula you are given for sin z in terms of the exponential function, and to solve a quadratic equation and use the logarithmic function.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo