Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Bus Stop

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

buses meeting


There were a number of excellent solutions to this problem which revealed three basically different approaches that I think are all worth sharing. James of Audenshaw School offered the following solution and commentary, which reflects the largest proportion of your answers. I like it very much because he explains his journey very well.

Derek adopted an approach based on a graphical solution and using similar triangles. I have included his graph, for interest, below. I used a graphical approach to solve this problem the first time I met it - and I felt that my solution was quite a neat one.

The last solution, and easily the most elegant, was presented by Ian and Charlie of the William Lovell School. I have added a little to their solution for clarity but it is simple and uses no algebra - quite a surprise and very, very nice as it makes excellent use of proportionality.

What a lovely problem.

We can establish from this a couple of inequalities and I was tempted to try this but decided it would be a pointless waste of time though linear programming can be fun.
Number line with ends x and x+y wth 145 adn 201 marked along it
A bus leaving $x$ must travel to $x+y$ and back to 145 and the bus leaving $x+y$ must travel to $x$ and then to 145. Therefore the distances for the respective buses are: \begin{eqnarray} Bus 1: x \rightarrow x+y \rightarrow 145\\ 2y - (145 - x)\\ Bus 2: x+y \rightarrow x \rightarrow 145\\ y +(145- x) \end{eqnarray} At this point it is not known which of these journeys is the longer journey. One may expect this to be important as it is the longer journey that has been under taken by the faster bus. However I can assure you that this is actually irrelevant but I will assume Bus 2 to be the faster bus. This gives the following equation:
\begin{eqnarray} \frac{y+ (145-x)}{5} &=& \frac{2y-(145-x)}{4} \\ 4(y+145-x) &= & 5(2y-145+x)\\ 1305 &=& 9x + 6y\\ 435 &=& 3x + 2y \end{eqnarray} This equation on its own is of course unsolvable, however if the same technique is applied to the 3rd meeting time an equation in terms of $x$ and $y$ will be achieved again. However although it is not relevant which bus was chosen as the faster it is very important that you select the same bus both times.
\begin{eqnarray} Bus 1: x \rightarrow x+y \rightarrow 145 \rightarrow x \rightarrow 201 \\ 2y (201 - x)\\ Bus 2: x+y \rightarrow x \rightarrow 145 \rightarrow x+y \rightarrow 201\\ 3y - (201 - x) \end{eqnarray} Again we will assume that Bus 2 is the faster bus. This will give the following equation
\begin{eqnarray} \frac{3y -(201-x)}{5} &=& \frac{2y+(201-x)}{4} \\ 4(3y-201 +x) &= & 5(2y+201-x)\\ 1809 &=& 9x + 2y \end{eqnarray} We now have two linear equations in terms of $x$ and $y$ which we need to solve: \begin{equation} 9x+2y= 1809 \end{equation} and \begin{equation} 3x+2y = 435 \end{equation} Solving these two equations we get $$x=229$$ $$y=-126$$

The negative sign for $y$ has happened because James assumed the second bus was the fastest when it was actually the first bus.

Now all that remains is to identify which town is $x$ and which is $x + y$.
For reasons I have already explained Bus 1 was the faster bus and we are told in the problem definition that this bus left from Shipton and hence the slower from Veston.
In this solution Bus 1 left from $x$. Therefore $x$ is Shipton and $x + y$ is Veston. So the milestone at Shipton is $103$ miles and the one at Veston $229$ miles.

Here is the diagram Derek used for his solution. Although his final answer was wrong, the use of similar triangles can result in a reasonably elegant solution.

Distance time graph for the two buses
Finally Ian's and Charlie's solution, I have included a diagram of the buses' journeys and made some minor modifications to the text.
Diagram of buses journeys
The fastest bus left from Shipton (green lines) and the slower from Veston (blue lines). The diagram shows the three meeting points for the buses as they travel between the two towns.
The bus from Shipton travels $5$ units in the same time as the bus from Veston travels $4$ units.

So first, divide the distance between the two towns into nine equal parts.

The first meeting place is A, the second meeting place is B, and the third meeting place is C.

The distance between B and C is : $201 - 145 = 56$

$56$ is four units and so each unit is $14$ miles.

So, to find the milestone of Veston: $201 + 28 = 229$

Milestone of Shipton: $145 - 42 = 103$

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo