Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Upsetting Pitagoras

Age 14 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

"Hello. I'm Kim Jinhyuna from Kingston-Grammar School. I would like to inform you that I have worked out the question 'Upsetting Pitagoras'. The mathematical problem has an infinite number of solutions. Let $x=1$ and $y=2$. Then $${1\over x^2}+{1\over y^2}= {1\over 1^2}+{1\over 2^2} = 1{\cdot}25 = {1\over 0{\cdot}8}.$$ So $z^2 = 0{\cdot}8$, and $z = \sqrt{0{\cdot}8}$ which gives $z=\pm 0{\cdot}894$ to 3 significant figures. For another solution, let Let $x=3$ and $y=4$. Then $${1\over x^2}+{1\over y^2}= {1\over 3^2}+{1\over 4^2} = 1{\cdot}736\ldots = {1\over 5{\cdot}76}.$$ So $z^2 = 5{\cdot}76$, and $z = \sqrt{5{\cdot}76}$ which gives $z=\pm 2{\cdot}4$ (exactly). However, I think that the problem comes with the assumption that $x$, $y$ and $z$ are all integers, in which case one answer is $x=30$, $y=40$ and $z=24$; that is $${1\over 30^2}+{1\over 40^2} = {1\over 24^2}.$$ If we multiply both sides by $4$ we get $${1\over 15^2}+{1\over 20^2} = {1\over 12^2}.$$ I'm looking forward to more tough and hard questions."

You can also use Pythagorean Triples to find the smallest integer solution to the equation:

If $a^2 + b^2 = c^2$ then $${1\over b^2c^2} + {1\over a^2c^2} = {1\over a^2b^2}.$$ So every Pythgorean triple gives rise to a solution to our problem. The smallest solution of this type arises from $a=3, b=4, c=5$ and gives $${1\over 20^2} + {1\over 15^2} = {1\over 12^2}.$$ Notice we have not proved that there is no other way of producing solutions but a simple computer program to make an exhaustive check of values of $x, y$ and $z$ up to these values will prove that there are no smaller solutions.

You may also like

Shades of Fermat's Last Theorem

The familiar Pythagorean 3-4-5 triple gives one solution to (x-1)^n + x^n = (x+1)^n so what about other solutions for x an integer and n= 2, 3, 4 or 5?

Rudolff's Problem

A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?

BT.. Eat Your Heart Out

If the last four digits of my phone number are placed in front of the remaining three you get one more than twice my number! What is it?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo