Or search by topic
Many of you approached this problem in the same way to start with. Maddie and Alex from The Mount School wrote:
We found out that 1+2+3+4+5+6...+20=210. Because we needed 7 different subsets that when added together made 7 consecutive numbers, we divided 210 by 7. 210/7=30Thank you, Boris. Many of you suggested ways to make pairs of numbers and then add a third to total one of the consecutive numbers like Boris' method.
Ivo from Gresham's Prep School used a different method to work out which consecutive numbers to aim to make:
Thank you, Ivo! Zoe, Andrew, Nikita and Ben from Aqueduct Primary School went about the problem in a slightly different way:
A | B | C | Answer |
2 | 7 | 16 | 25 |
4 | 5 | 17 | 26 |
0 | 1 | 2 | 3 | 4 | 5 | 6 |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | 16 | 17 | 18 | 19 | 20 |
A | B | C | Answer |
0 | 7 | 14 | 21 |
1 | 8 | 15 | 24 |
2 | 9 | 16 | 27 |
3 | 10 | 17 | 30 |
4 | 11 | 18 | 33 |
5 | 12 | 19 | 36 |
6 | 13 | 20 | 39 |
A | B | C | Answer |
0 | 13 | 14 | 27 |
1 | 12 | 15 | 28 |
2 | 11 | 16 | 29 |
3 | 10 | 17 | 30 |
4 | 9 | 18 | 31 |
5 | 8 | 19 | 32 |
6 | 7 | 20 | 33 |
Thank you Zoe, Andrew, Nikita and Ben. It is always good to receive solutions which take us all the way through the process that you followed to solve the problem. Your solution shows us that "playing" with a problem can be a very good way to start and will often lead to us finding something out that helps us go about a solution more systematically (in other words more logically).
From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How many such students are there?
Suppose you had to begin the never ending task of writing out the natural numbers: 1, 2, 3, 4, 5.... and so on. What would be the 1000th digit you would write down.
How many ways can you write the word EUROMATHS by starting at the top left hand corner and taking the next letter by stepping one step down or one step to the right in a 5x5 array?