Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Groups of Sets

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Thanks Jack from Pate's School, Yosef from Yeshivat Rambam High School, Baltimore, Andrei from Tudor Vianu National College, Bucharest, Romania and Curt from Reigate College for your solutions.

The binary operation $*$ for combining sets is defined as $A*B =(A\cup B) - (A\cap B)$.

To prove that $G$, consisting of the set of all subsets of a set $S$ (including the empty set and the set $S$ itself), together with the binary operation $*$, forms a group (assuming that the associative property is satisfied) it has to be shown that $G$ is closed, it contains an identity element and for each element in $G$ there is an inverse element contained in $G$.
Set diagram If $A$ and $B$ are two subsets of the set $S$, then $A*B =(A\cup B) - (A\cap B)$ is also a set, and $(A\cup B) - (A\cap B)$ is the subset of $S$ shown in colour in Andrei's diagram. Hence the closure property is satisfied.

The union of any set $A$ and the empty set $\phi$, is $A$, and there is no intersection between $A$ and $\phi$ as $\phi$ contains no elements to intersect.

$$\eqalign{ A*\phi &= (A\cup \phi)-(A\cap \phi)\cr &= A - \phi \cr &= A}.$$

Therefore $\phi$ is the identity element.

The intersection of a set with itself is itself, and the union of a set with itself is itself, for any set $A$, that is

$$\eqalign{ A*A &= (A\cup A) - (A\cap A) \cr &= A - A \cr &= \phi }.$$

Therefore the inverse of any element is itself, each element of $G$ is self inverse.

The fourth property, associativity, was assumed so we have shown $G$ is a group.

To solve $\{1,2,4\}*X=\{3,4\}$, rewrite it as $A*X=B$, where the solution is $X=A^{-1}*B$. We consider the set of all subsets of the natural numbers and note that this is an example of the group discussed above. Hence as the element $\{1,2,4\}$ is self inverse:

$$\eqalign{ X &= \{1,2,4\}*\{3,4\} \cr &= \{1,2,4\}\cup\{3,4\}- \{1,2,4\}\cap \{3,4\} \cr &= \{1,2,3,4\} - \{4\} \cr &= \{1,2,3\} }.$$ Check: $$\eqalign{ \{1,2,4\}*\{1,2,3\}&= \{1,2,4\}\cup\{1,2,3\} - \{1,2,4\}\cap\{1,2,3\}\cr &=\{1,2,3,4\}- \{1,2\} \cr &= \{3,4\} .}$$

You may also like

Small Groups

Learn about the rules for a group and the different groups of 4 elements by doing some simple puzzles.

An Introduction to Galois Theory

This article only skims the surface of Galois theory and should probably be accessible to a 17 or 18 year old school student with a strong interest in mathematics.

What's a Group?

Explore the properties of some groups such as: The set of all real numbers excluding -1 together with the operation x*y = xy + x + y. Find the identity and the inverse of the element x.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo