Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rudolff's Problem

Age 14 to 16
Challenge Level Yellow star
  • Problem
  • Student Solutions

Congratulations to Elizabeth Whitmore and Sue Liu of Madras College, St Andrew's, Scotland, to Giulio Tiozzo, age 15, Liceo Scientifico "Galileo Ferraris", Turin, Italy, and to Vassil Vassilev, age 14, Lawnswood High School, Leeds and Jonathan Kemp, age 17, Westwood High School, Leek, England. Here is Jonathan's solution.

The problem states that a group of 20 people pay a total of £20 to see an exhibition, admission £3 for men, £2 for women and 50p for children.

Denoting the number of men as $x$, the number of women as $y$ and the number of children$z$ you have to solve two simultaneous equations:$$ x + y + z = 20$$ and $$3x + 2y + {z\over 2} = 20.$$ Multiplying the second equation by 2 and subtracting the first equation to eliminate $z$ gives: $$ 5x + 3y =20.$$ This is a Diophantine equation as featured in this months article. It is easy to spot two solutions, namely $x = 4$ , $y = 0$, and $x = 1$, $y = 5$. In this case we have 2 simultaneous equations and 3 unknowns.

Substituting these solutions into the first two equations gives: $ 4 + 0 + z = 20$ therefore $z = 16$ and $12 + 0 + z/2 =20$ and again $z = 16$.

Substituting $x = 1$ and $y = 5$ gives: $1 + 5 + z = 20$ therefore $z = 14$ and $3 + 10 + z/2 = 20$ and again $z = 14$.

So the group can either consist of either 4 men, no women and 16 children, or of 1 man, 5 women and 14 children.


You may also like

Upsetting Pitagoras

Find the smallest integer solution to the equation 1/x^2 + 1/y^2 = 1/z^2

Our Ages

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Coffee

To make 11 kilograms of this blend of coffee costs £15 per kilogram. The blend uses more Brazilian, Kenyan and Mocha coffee... How many kilograms of each type of coffee are used?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo