Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Pythagorean Fibs

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Teachers' Resources

The Fibonacci sequence is defined by the recurrence relation (sometimes called 'difference equation') $$F_n + F_{n+1}=F_{n+2}.$$ This is the simplest possible second order recurrence relation with constant coefficients as all the coefficients are one. The method of solving recurrence relations like this is to let $F_n=x^n$. Then $x^n+x^{n+1}=x^{n+2}$ and hence (dividing by $x^n$), $1 + x = x^2$ giving the quadratic equation $x^2-x-1=0$. So the quadratic equation has solutions $x={1 \pm \sqrt5\over 2}$. Hence the solutions of the recurrence relation are $$F_n=A\left({1+\sqrt5\over 2}\right)^n +B \left({1-\sqrt 5\over 2}\right)^n$$ where we have to find the values of the constants $A$ and $B$.

Putting $n=1$ and $F_1 = 1$ and multiplying by 2 $$2 = A(1 + \sqrt 5)+B(1-\sqrt 5)$$ and putting $n=2$ and $F_2=1$ and multiplying by 4 $$ 4 = A(1 + \sqrt 5)^2 + B(1-\sqrt 5)^2.$$ Solving these simultaneous equations for $A$ and $B$ we get $$A={1\over \sqrt 5}, \quad B =-{1\over \sqrt 5}.$$ Hence the solution of the recurrence relation is $$F_n = {1\over \sqrt 5}\left({1+\sqrt 5\over 2}\right)^n - {1\over \sqrt 5}\left(1-\sqrt 5\over 2\right)^n.$$ \par Note that the formula for $F_n$ is given in terms of the roots of the quadratic equation $x^2-x-1=0$ and one of the roots is the Golden Ratio which accounts for the many connections between Fibonacci numbers and the Golden Ratio.

This problem complements the material in the article
The Golden Ratio, Fibonacci Numbers and Continued Fractions

For a sequence of, mainly more elementary, problems on these topics see Golden Mathematics









You may also like

Golden Powers

You add 1 to the golden ratio to get its square. How do you find higher powers?

Continued Fractions I

An article introducing continued fractions with some simple puzzles for the reader.

Fibonacci Factors

For which values of n is the Fibonacci number fn even? Which Fibonnaci numbers are divisible by 3?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo