Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Multiplication Square

Age 14 to 16
Challenge Level Yellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

 

Well done to Maulik aged 11 who sent in some nice work on this problem. Neil's solution is given below.

 

For a 2 by 2 square with column headings of x and x+1, and row headings of y and y+1, Neil says that:

For the two by two square you can always express it algebraically like this:
2x2

So the diagonal from top right to bottom left is:

$(x+1)y+x(y+1) = xy+y+xy+x = 2xy+x+y$

Lets call that Z.

The diagonal from top left to bottom right is:

$xy+(x+1)(y+1) = xy+xy+x+y+1 = 2xy+x+y+1$

 

So the first diagonal is Z and the second Z+1 so the diagonal from top left to bottom right is always 1 more than the diagonal from top right to bottom left.

 

For a 3 by 3 square with column headings of x, x+1 and x+2, and row headings of y, y+1 and y+2, Neil says that:

The 3 by 3 square looks like this:

3x3

 

The diagonal from top right to bottom left is:

$\begin{split}x(y+2)+(x+1)(y+1)+(x+2)y &= xy+2x+xy+x+y+1+xy+2y \\&= 3xy+3x+3y+1\end{split}$

 

 

 

The diagonal from top left to bottom right is:

$ \begin{split}xy+(x+1)(y+1)+(x+2)(y+2) &= xy+xy+x+y+1+xy+2x+2y+4 \\&= 3xy+3x+3y+5 \end{split}$

 

 

Let's say that $3xy+3x+3y = W$

 

The diagonal from top right to bottom left is W+1.

The diagonal from top left to bottom right is W+5. So the difference between the diagonals is 4.

 

 

More generally

Continuing with the same method:
summary of results
Note that
1 = 1 ²
4 = 2 ²
10 = 1 ² + 3 ²
20 = 2 ² + 4 ²
35 =1 ² + 3 ² + 5 ²
56 = 2 ² + 4 ² + 6 ²
84 = 1 ² + 3 ² + 5 ² + 7 ²

Neil goes on to point out that the differences are the tetrahedral numbers.
Tetrahedral numbers are the sum of consecutive triangular numbers.
The formula is 1/6n(n+1)(n+2).
The first few tetrahedral numbers are 1, 4, 10, 20, 35, 56, 84, 120, ...
The tetrahedral numbers are found in the fourth diagonal of Pascal's triangle:

 

pascal's triangle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You may also like

Doodles

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

Russian Cubes

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo