Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Nine-pin Triangles

Age 7 to 11
Challenge Level Yellow star
Primary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Nine-pin Triangles

How many different triangles can you make on a circular pegboard that has nine pegs?

You may like to use the interactivity to try out your ideas. Click on two of the dots to create a line between them.

If you prefer to work on paper, you might find this sheet of nine-peg boards useful.


Once you've had a go at this, why not investigate the number of different triangles you can create on circular pegboards with more or fewer pegs?
You might also like to have a look at this task for some extension questions!

Many thanks to Geoff Faux who introduced us to the merits of the nine-pin circular geoboard.
For further ideas about using geoboards in the classroom, please see Geoff's publications available through the Association of Teachers of Mathematics (search for 'geoboards').

 

Why do this problem?

This low threshold high ceiling problem will help learners extend their knowledge of properties of triangles. It requires visualisation, a systematic approach and is a good context for generalisation and symbolic representation of findings.

Possible approach

To start with, you could pose the problem orally, asking children to imagine a circle with nine equally spaced dots placed on its circumference. How many triangles do they think it might be possible to draw by joining three of the dots? Take a few suggestions and then ask how they think they could go about finding out.

Show the interactivity, or draw a nine-point circle on the board. Invite them each to imagine a triangle on this circle. How would they describe their triangle to someone else? Let the class offer some suggestions e.g. by numbering the dots and describing a triangle by the numbers at its vertices, and then return to the problem of the number of different triangles. Discuss ways in which they will be able to keep track of the triangles and how they will know they have them all. Some children may wish to draw triangles in a particular order, for example those with a side of 1 first (i.e. adjacent pegs joined), then 2 etc. Others may feel happy just to list the triangles as numbers. This sheet of blank nine-point circles may be useful. Encourage children to work in small groups to find the total number.

Bring them together to share findings and systems, using the interactivity to aid visualisation.

Quadrilaterals is a similar problem which pupils could try next.

Key questions

How do you know your triangles are all different?
How do you know you have got all the different triangles?

Possible extension

Triangles All Around is a good follow-up activity to this one.  You could challenge pupils to think about whether they could predict the number of different triangles which are possible for different point circles. How would they do about finding out? It may be useful to have sheets of other point circles available: four-point, five-point, six-point, eight-point. Are there any similarities between all the circles with an odd numbers of points? How about those with an even number?

Possible support

Children could begin by investigating the seven-point circle.

Related Collections

  • Back to LTHC resources

You may also like

Tri.'s

How many triangles can you make on the 3 by 3 pegboard?

Cutting Corners

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Bracelets

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo