Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Sine and Cosine for Connected Angles

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Chris from Saint John Payne School sent in clear diagrams to explain the first part.
solution picture 1
solution picture 2
solution picture 3

Diana thought about a general result. Here's what she sent us.

Circle

In general, suppose that we've placed points $A$, $B$ and $C$ in such a way that $\angle A O B=\angle B O C=2\theta$. I'm going to show that $\sin(2\theta)=2\sin\theta\cos\theta$. This is called a double angle formula.\par From triangle $O A M$, we know that $A M=\sin(2\theta)$ (as the circle has radius $1$).

From triangle $O A B$, we know that $A B=2\sin\theta$ (the blue line bisects the angle at $O$ and since triangle $A O B$ is isosceles, the blue line meets $A B$ at a right angle, so we can think about two right-angled triangles, each with angle $\theta$ at $O$).

Since $\angle A B O=90^{\circ}-\theta$ (from the isosceles triangle $A O B$), we know that $\angle B A M=\theta$, and so from triangle $A B M$ we see that $A M=A B\cos\theta$.

Putting together the last two paragraphs, we get $A M=2\sin\theta\cos\theta$. But also $A M=\sin(2\theta)$, so $\sin(2\theta)=2\sin\theta\cos\theta$.

You may also like

Coke Machine

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Cosines Rule

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo