Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Overarch 2

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Bricklayers build from the ground up, but to solve this problem you must start at the top! Alexander Maryanovsky sent in a correct solution.

Let's adopt a unit of length of half the length of a brick, and W as the weight of 1 brick.
building from the top
We want to calculate the formula for the overhang $d_n$ of brick $n$ over brick $(n+1)$. (See the diagram). The idea is to imagine inserting brick $n$ under the existing pile of bricks 1, 2, 3...$(n-1)$ (numbering the bricks from the top) so that the centre of mass of bricks 1, 2, 3... $(n-1)$ will be exactly above the edge of brick $n$.

You can treat the edge of brick $(n+1)$ as the fulcrum of a balance. The maximal arch will be created when there is a perfect balance on each edge.
If you calculate $d_1$, $d_2$,... you should find that
\begin{eqnarray} d_1 &=& 1\\ d_2 &=& {1\over 2}\\ d_3 &=& {1\over 3}\\ \end{eqnarray}
So it seems likely that $d_n = {1\over n}$.

As the centre of mass of the stack of bricks above must be exactly over the edge of the next brick down, we take moments for the stack of $n$ bricks resting on the $(n+1)$st brick (counting the bricks from the top). We need the centre of mass of (n-1) bricks at distance $d_n$ from the fulcrum to balance 1 brick (the $n$th brick) at distance $(1 - d_n)$. Hence \begin{eqnarray} W(1 - d_n) &=& (n-1)Wd_n\\ d_n &=& {1\over n} \end{eqnarray} The total overhang $A_n$ for an arch containing $n + 1$ bricks is therefore $$ A_n = \sum_1^n 1/n $$

Alexander went on to say...

After some asking around, I was told there is no closed form for that. A small computer program that looks like this:

double overhang = 0;
double brickWidth = 20;
double maxOverhang = 100;
double numBricks = 0;
while (overhang < maxOverhang){
numBricks = numBricks+1;
overhang = overhang+brickWidth/(2*numBricks);
}
returns 12367 as the number of bricks needed to make an overhang of 1m, making its height 12367*10cm = 1,236.7m Since 1+1/2+1/3+...+1/n doesn't converge, you can make the overhang as big as you wish (I'm not gonna go into counting how much material for those bricks is needed and if there's enough of it in the universe :-) )

You may also like

High Jumping

How high can a high jumper jump? How can a high jumper jump higher without jumping higher? Read on...

Wobbler

A cone is glued to a hemisphere. When you place it on a table in what position does it come to rest?

Well Balanced

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo