Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

At a Glance

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions


Congratulations to all the following who sent in very good solutions to this problem: David from Trinity School, Carlisle (whose solution was the first to arrive); Babak Shirazi from Woodhouse SF College, London; Chen Yiwen from The Chinese High School, Singapore; Nathan from Riccarton High School, Churchtown, New Zealand; Lee Jia Hui from National Junior College, Singapore and finally Alexander from Shevah-Mofet School, Israel. The following solution is made up of bits supplied by several of these contributors.

The pentagon is made of 5 triangles exactly the same as $AOB$, and the pentangle is made of 5 shapes exactly the same as $AOBC$.
\begin{eqnarray} \\ \frac{{\rm Area (pentangle)}}{{\rm Area (pentagon)}} &=& \frac{{\rm Area (AOBC)}}{{\rm Area (AOB)}}\\ &=& 1-\frac{{\rm Area (ACB)}}{{\rm Area( AOB)}} \\ &=& 1-\frac{{\rm Area (DCB)}}{{\rm Area (DOB)}} \\ &=& 1-\frac{DC}{DO}\\ &=& \frac{CO}{DO} < \frac{1}{2}. \end{eqnarray}
In order to calculate this ratio exactly we first find the angles and then use trigonometry. $$ \angle AOB = 72^\circ $$ $$\angle DOB = \frac{1}{2}\angle AOB = 36 ^\circ $$As $AC$ is parallel to $PM$ and $CB$ is parallel to $MK$, $$\angle ACB = \angle PMK = 108 ^\circ . $$ $$\angle DCB = {1\over 2}\angle ACB = 54^\circ .$$
\begin{eqnarray} \\ \frac{{\rm Area (pentangle)}}{{\rm Area (pentagon)}} &=& 1-\frac{DB \tan 36}{DB\tan 54}\\ &=& 1-{\tan 36 \over \tan 54} \\ &=& 1- \tan^2 36 \\ &=& 1- (5 - 2{\sqrt 5}) \\ &=& 2{\sqrt 5} - 4 \\ &=& 0.47\quad {\rm approx.} \end{eqnarray}
This ratio is just less than 0.5 meaning the pentangle is a bit smaller than half the pentagon.

Footnote: You don't need a calculator, from the diagram it is possible to calculate exact values for the trig. ratios for $18^\circ $, $36^\circ$, $54^\circ$ and $72^\circ$. All the angles marked with a spot can be shown to be $36^\circ$ using simple properties of triangles. Let $CA=CB=x$. The triangle $PAC$ is an isosceles triangle with base angles of $72^\circ$. If $PA=PC=1$ then $PB=1+x$. Triangles $PAB$ and $ACB$ are similar, hence $$\frac{x}{1} = \frac{1}{1+x}$$

This gives a quadratic equation which can be solved to give $x = \frac{1}{2}({\sqrt 5} - 1).$

Now we have $AD={1\over 2}$ and so (using Pythagoras Theorem to find $CD$): $$\tan^2 36^\circ = 4CD^2 = 4(x^2 - \frac{1}{4}) = 4x^2 - 1 = 5 - 2{\sqrt 5}.$$

You may also like

Golden Thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Contact

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

Gift of Gems

Four jewellers share their stock. Can you work out the relative values of their gems?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo