Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Bendy Quad

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
Secondary curriculum
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

The first thing some solvers did was to play with the interactivity to see what things they could change and what they couldn't.

Playing with the interactivity told us that if we change one thing, we can't change anything else without affecting the thing we changed first. For example, we moved point B to change the angle at A, and this then fixed the rest of the shape (when we tried to move C, the angle at A changed). We checked why this was the case by constructing the shape with ruler and compasses. If we picked a particular angle at A, there was only one possible quadrilateral with the correct lengths. We thought about this in terms of the two triangles ABD and BCD. This links to our work on congruent triangles.

We then started to investigate the shapes we could make.
The smallest that angle A can be is just above $0^{\circ}$ giving a long thin quadrilateral:

Angle C is also very close to $0^{\circ}$, and angles B and D are both very close to $180^{\circ}$.

Then we made angle A as big as we could. If it went over $180^{\circ}$ the quadrilateral would no longer be convex and if it was equal to $180^{\circ}$ we would have a triangle. This picture shows what the shape looks like when angle A is close to $180^{\circ}$

When angle A is $180^{\circ}$, angles B and D are as small as they can possibly be, and angle C is as large as it can possibly be. If we tried to make B and D smaller or make C bigger, A got bigger too.

We drew the shape as a triangle to help us to work out the minimum values of B and D, and the maximum value of C.


BCD is a triangle with sides $7$, $6$ and $5$ units.We used the Cosine Rule to work out angle B.


${CD}^2 = {BC}^2 +{BD}^2-2(BD)(CD)cosB$

$6^2=5^2+7^2-2 \times 5 \times 7 \times cosB$

We rearranged this to get
$$ cos B = 0.543$$
which gave $$B = 57.1^{\circ}$$

Then we worked out angles C and D in the same way.
Angle C is $78.5^{\circ}$ and angle D is $44.4^{\circ}$ (all our numbers have been rounded to $3$ significant figures).
This shows that all the quadrilaterals will have angle A between 0 and 180, B between 57.1 and 180, C between 0 and 78.5 and D between 44.4 and 180. Can you find any special quadrilaterals with angles in these ranges? Are there any with right angles in? Any cyclic quadrilaterals? We would love to hear about anything interesting you discover!


You may also like

Lawnmower

A kite shaped lawn consists of an equilateral triangle ABC of side 130 feet and an isosceles triangle BCD in which BD and CD are of length 169 feet. A gardener has a motor mower which cuts strips of grass exactly one foot wide and wishes to cut the entire lawn in parallel strips. What is the minimum number of strips the gardener must mow?

Long Short

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Dividing the Field

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two trapeziums each of equal area. How could he do this?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo