Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Climbing Powers

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

There are two definitions of $2^{3^4}$ . Definition 1 gives $(2^3)^4$ which is $2^{12}$ and definition 2 gives $2^{(3^4)}$ which is $2^{81}$.

Similarly the values of $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ and $\sqrt{2}^{(\sqrt{2}^{\sqrt{2}})}$ are not equal. The first of these is $f(f(\sqrt{2}))$ where $f(x) = x^{\sqrt{2}}$ ; the second of these is $g(g(\sqrt{2}))$ where $g(x) =(\sqrt{2})^{x}$.

To see what happen if you iterate the functions many times you should now experiment, using your calculator or computer, by iterating both $f$ and $g$ in each case starting with the value $\sqrt{2}$.

Using these two definitions, we think of
\[ \sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{\sqrt{2}^{.^{.^{.}}}}}}} \]

(where the powers of root 2 go on for ever) as the limit as $n$ to infinity of the sequence \[ x_1, x_2, x_3 , \dots x_n \]

where, according to the first definition, $x_{n+1}= f(x_n)$, or equivalently, \[ x_{n+1} = x_{n}^{\sqrt{2}} \]

and, according to the second definition, $x_{n+1}= g(x_n)$, or equivalently, \[ x_{n+1} = ( \sqrt{2})^{x_n} \] In both cases, if the limit exists, you will find it by putting $x_{n+1} = x_n = x$.

You may also like

Telescoping Series

Find $S_r = 1^r + 2^r + 3^r + ... + n^r$ where r is any fixed positive integer in terms of $S_1, S_2, ... S_{r-1}$.

Growing

Which is larger: (a) 1.000001^{1000000} or 2? (b) 100^{300} or 300! (i.e.factorial 300)

How Many Solutions?

Find all the solutions to the this equation.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo