Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Polynomial Relations

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Good solutions to this problem were received from Tyrone of Cyfarthfa High School in Merthyr Tydfil, and Koopa of Boston College in the USA.

Tyrone solved the problem by relating both polynomials to $(x+1)^2$ :

$$ \eqalign { p(x)=x^2 + 2x \Rightarrow &p &=&(x+1)^2 - 1 \\ &p+1 &=& (x+1)^2 \\ } $$
(1)
$$ \eqalign { q(x)=x^2 + x + 1 \Rightarrow &q &=&(x+1)^2 - x \\ &q+x &=& (x+1)^2 \\ } $$
(2)

$ \Rightarrow p+1=q+x $ (combining eqns (1) and (2)).


But $x=(p+1)^{1/2}-1$ (from eqn (1)). So

$$ \eqalign { \Rightarrow p+1&=&q+ ((p+1)^{1/2}-1) \\
&=&q+ (p+1)^{1/2}-1 }$$
$$ \eqalign { p-q+2&=&(p+1)^{1/2} \\
(p-q+2)^2&=&p+1}$$.

Squaring the bracket,

$$ \eqalign { &p^2-pq+2p-pq+q^2-2q+2p-2q+4=p+1 \\ &p^2 -2pq+q^2+4p-4q+4=p+1 \\ &p^2-2pq+q^2+3p-4q+3=0 } $$.

You may also like

Real(ly) Numbers

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Janusz Asked

In y = ax +b when are a, -b/a, b in arithmetic progression. The polynomial y = ax^2 + bx + c has roots r1 and r2. Can a, r1, b, r2 and c be in arithmetic progression?

More Polynomial Equations

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo