Or search by topic
Good solutions to this problem were received from Tyrone of
Cyfarthfa High School in Merthyr Tydfil, and Koopa of Boston
College in the USA.
Tyrone solved the problem by relating both polynomials to
$(x+1)^2$ :
If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?
In y = ax +b when are a, -b/a, b in arithmetic progression. The polynomial y = ax^2 + bx + c has roots r1 and r2. Can a, r1, b, r2 and c be in arithmetic progression?
Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.