Or search by topic
![]() |
I found \cos 36^\circ and \cos 72 ^\circ by using the cosine rule for triangles DCP and APD respectively. \cos 36^\circ = {{x^2 + 1 - 1}\over 2x} = {x\over 2} \cos 72^\circ = {{1 +x^2 - x^2}\over 2x} = {1\over 2x} Combining these two expressions, \cos 36^\circ \cos 72^\circ = {x\over 2}.{1\over 2x}={1\over 4}. |
Consider the area of the triangle `above' the diagonal, and
express it is the sum of two areas : {1\over 2} x^2 \sin
108^\circ = {1\over 2} x\cdot1\cdot\sin 72^\circ + {1\over 2}
1\cdot 1\cdot\sin108^\circ. As \sin 108^\circ = \sin 72^\circ,
this gives x^2=x+1 and hence x is the golden ratio: x =
{1+\sqrt{5}\over 2} = \varphi . Hence \cos 36^\circ - \cos
72^\circ = {x\over 2} - {1\over 2x} = {x^2-1\over 2x}={1\over
2}.
|
Here we have {{x + b}\over a} =\cos 36^\circ and {x\over a} = \cos 72^\circ so {b\over a} = \cos 36^\circ -\cos 72^\circ = {1\over 2}. Therefore a is twice the length of b. | ![]() |
Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.
Three triangles ABC, CBD and ABD (where D is a point on AC) are all isosceles. Find all the angles. Prove that the ratio of AB to BC is equal to the golden ratio.