Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

On the Road

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Student Solutions
  • Teachers' Resources

This solution was sent in by Ben at Madras College in St Andrews. Another good solution was sent in by Nicola at Madras College.

The car overtakes the scooter at 12.00. This point can be taken as the origin of a graph of distance against time.

Solution.

Assuming that the car travels at 1 unit per hour, the car therefore has equation y=x.

Now assume that the scooter travels at $a$ times the speed of the car, where $0 < a < 1$. So, it has equation $y=ax$.

Now for the motorcycle, whose line goes through $(4,4)$ and $(5,5a)$.
Gradient $= (5a-4)/(5-4) = 5a-4$
Substituting in the point $(5,5a)$,

$$ \begin{eqnarray} y - b &=& m(x-a) \\ y - 5a &=& (5a-4)(x-5) \\ y &=& 5ax - 4x - 20a + 20 \end{eqnarray} $$

To find the intersection of the motorcycle and bike, we know that $x=6$.
Therefore $y-5a = (5a-4) \times 1$, and so $y = 10a-4$.

For the bike,

$$ gradient = \frac{10a-4-2}{6-2} = \frac{10a-6}{4} $$

Using $(6, 10a-4)$, [Why not $(2,2)$? - Ed]

$$ \begin{eqnarray} y -b &=& m(x-a) \\ y - (10a-4)& =& \frac{10a-6}{4}(x-6) \\ 4y - 40a + 16 &=& 10ax - 6x - 60a + 36 \\ 4y &=& 10ax - 6x - 20a + 20 \\ \end{eqnarray} $$

When the bike meets the scooter, $y=ax$, so $4y=4ax$.
Therefore

$$ \begin{eqnarray} 10ax - 6x - 20a + 20 &=& 4ax \\ 6ax - 6x &=& 20a - 20 \\ 3ax - 3x &=& 10a - 10 \\ 3x(a-1) &=& 10(a-1) \\ 3x &=& 10 \\ x &=& 3\frac{1}{3} \end{eqnarray} $$

So, whatever the value of $a$, the scooter and bike meet 3 hours and 20 minutes after 12.00, at 15.20.

You may also like

Pentagonal

Can you prove that the sum of the distances of any point inside a square from its sides is always equal (half the perimeter)? Can you prove it to be true for a rectangle or a hexagon?

A Scale for the Solar System

The Earth is further from the Sun than Venus, but how much further? Twice as far? Ten times?

Swimmers

Swimmers in opposite directions cross at 20m and at 30m from each end of a swimming pool. How long is the pool ?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo