Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Squash

Age 16 to 18
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

In the game of squash, the player who serves is the only player who can win the next point. If the server loses the rally, no points are scored and the other player serves next. Note that if in two consecutive rallies both servers lose the rally, then the situation is exactly the same as it was before the two serves. This is not taken into account below where the tree diagram and solution from Allan Ling apply to the simpler problem where the player who wins a rally wins the point whether serving or receiving. Can you see how to re-draw the tree diagram to give the solution for the game of squash?

If I call '9', then I win with probability p.

If I call '10', then there are 6 possible outcomes, shown by the tree diagram. Solution

The winning outcomes are shown in red. Calculating the probabilities of these three outcomes, we find that the total is p 2 + p(1-p)p + (1-p)p 2 = 3p 2 - 2p 3 .

Now we compare this to p to see which is larger.
When p< 0.5, then p> 3p 2 -2p 3 .
When p=0.5, then p=3p 2 -2p 3 .
When p> 0.5, then p< 3p 2 -2p 3 .

Therefore, in this simplified situation, if p is smaller than 0.5, I should call '9', and if p is greater than 0.5, I should call '10'. If p=0.5, I have an equal chance of winning on both choices.

Now what happens playing according to the rules of squash?
 

There is a detailed explanation of the solution to this problem in this article.

You may also like

Rain or Shine

Predict future weather using the probability that tomorrow is wet given today is wet and the probability that tomorrow is wet given that today is dry.

Playing Squash

Playing squash involves lots of mathematics. This article explores the mathematics of a squash match and how a knowledge of probability could influence the choices you make.

Which Spinners?

Can you work out which spinners were used to generate the frequency charts?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo