Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Rationals Between...

Age 14 to 16
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Charlie and Alison are exploring fractions and surds.
They are looking for fractions with different denominators that lie between $\sqrt{65}$ and $\sqrt{67}$.

Can you find some fractions that lie between $\sqrt{65}$ and $\sqrt{67}$?

Charlie and Alison found that for some denominators, there is no fraction between $\sqrt{65}$ and $\sqrt{67}$. Click to reveal their thoughts.

Charlie said:


$\sqrt{65}$ is approximately $8.06$, and $\sqrt{67}$ is approximately $8.18$.
Fractions with a denominator of $4$ end in $0$ or $.25$ or $.5$ or $.75$ so there is no fraction with a denominator of $4$ between $\sqrt{65}$ and $\sqrt{67}$.


Alison agreed with Charlie but thought about it in a slightly different way:


I'm looking for a fraction $\frac{p}{q}$ where $\sqrt{65}<\frac{p}{q}<\sqrt{67}$.
This means that $65<\frac{p^2}{q^2}<67$,
or $65q^2<{p^2}<67q^2$.

Suppose $q=4$.
$65\times16<{p^2}<67\times16$
$1040<{p^2}<1072$

$32^2=1024$, and $33^2=1089$, so there is no perfect square between $1040$ and $1072$.

Therefore, $q\neq4$, so there is no fraction with a denominator of $4$ between $\sqrt{65}$ and $\sqrt{67}$.


Can you find other denominators where there is no fraction in the interval?
How will you know when you have found them all?


You may also like

The Root of the Problem

Find the sum of this series of surds.

Repetitiously

Can you express every recurring decimal as a fraction?

Equal Equilateral Triangles

Can you make a regular hexagon from yellow triangles the same size as a regular hexagon made from green triangles ?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo