Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Quartics

Age 16 to 18
Challenge Level Yellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions

Congratulations to Aleksander Twarowski from Gdynia Bilingual High School No 3, Poland for solving this Tough Nut. Well done!
graph

We can observe that for $t=2$ it has 3 stationary points (derivative is equal to 0), 2 minima and 1 maximum. It is an even function symmetrical about the $y$-axis. The function and its graph are the same for $t=-1/2$ as for $t=1/2$.

Let's expand this formula: $$\eqalign{ y&=[1+(x-t)^2][1+(x+t)^2] \cr &= [x^2 + (1+t^2) - 2tx][x^2 +(1+t^2)+2tx]\cr &= x^4 +2x^2(1+t^2)+(1+t^2)^2 - 4t^2x^2\cr &= x^4 +2(1-t^2)x^2 +(1+t^2)^2}$$ When we find its derivative with respect to $x$ we obtain $$y'=4x^3+4x(1-t^2)= 4x[x^2+(1-t)(1+t)].$$ Now we can investigate stationary points when $$4x[x^2+(1-t)(1+t)]=0.$$ It is important to observe that $[x^2+(1-t)(1+t)]$ can be factorized only when $(1-t^2)$ is negative or zero, that is $t^2\geq 1$. So there are three stationary points when $t$ belongs to interval from negative infinity to $-1$ and from $1$ to positive infinity. Hence, we can state that when $t$ belongs to $[-1,1]$ the graph looks like it does for $t=1/2$ above, and when $t$ belongs to $(-\infty,-1)$ or $(1,+\infty)$ the graphs have three stationary points and look like the one for $t=2$ above. Because these three intervals include all real values of $t$, the graphs cannot have other shapes.

You may also like

How Many Solutions?

Find all the solutions to the this equation.

Power Up

Show without recourse to any calculating aid that 7^{1/2} + 7^{1/3} + 7^{1/4} < 7 and 4^{1/2} + 4^{1/3} + 4^{1/4} > 4 . Sketch the graph of f(x) = x^{1/2} + x^{1/3} + x^{1/4} -x

Sine Problem

In this 'mesh' of sine graphs, one of the graphs is the graph of the sine function. Find the equations of the other graphs to reproduce the pattern.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo