Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

Platonic Planet

Age 14 to 16
Challenge Level Yellow starYellow starYellow star
  • Problem
  • Getting Started
  • Student Solutions
  • Teachers' Resources

Why do this problem?

This problem gives learners the opportunity to use their visualisation skills to investigate different paths over the surface of a solid. Tackling the challenge of finding the shortest path offers a chance to practise trigonometry, as well as encouraging justification that there is no better path than the one they find.

Possible approach

Start with a cube and investigate nets and paths.
How about an octahedron?
Next, ask everyone to imagine they were standing on the surface of a dodecahedron. Ask what they can see if they are standing on a face, on an edge, or on a vertex.

One way of introducing the idea of paths on the surface of the dodecahedron is to have a model of a dodecahedron which can be drawn on and then unfolded into its net. Alternatively, the path could be drawn on a net and learners will need to imagine how the parts of the path will meet up when the net is folded up, to make sure it really is a closed path.

The pictures of nets shown in the problem are not necessarily the easiest nets to use to draw the path, so it is worth drawing out discussion of what would be a good net to use in order to aid visualisation.

Once everyone is happy with the idea of closed paths on the surface of the dodecahedron, learners can start to create their own paths and calculate the lengths. At each stage, they should be challenging themselves to see whether there is any way they can make the path shorter while still being able to see every part of the planet's surface.

In order to compare answers within the classroom, it is important for the class to decide how long one side of the planet will be. This could be a good opportunity to discuss the idea of working things out in terms of a unit length.

Key questions

How much of the planet's surface can I see if I stand at a face, an edge, a vertex?
Is it easier to investigate this problem using some nets rather than others?

Possible extension

The Dodecahedron provides an opportunity for further exploration of paths on the surface.

Possible support

Use accurate scale drawing to calculate path lengths rather than trigonometry.

You may also like

Just Rolling Round

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Coke Machine

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design...

Just Opposite

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo