Skip over navigation
Cambridge University Faculty of Mathematics NRich logo
menu search
  • Teachers expand_more
    • Early years
    • Primary
    • Secondary
    • Post-16
    • Events
    • Professional development
  • Students expand_more
    • Primary
    • Secondary
    • Post-16
  • Parents expand_more
    • Early Years
    • Primary
    • Secondary
    • Post-16
  • Problem-Solving Schools
  • About NRICH expand_more
    • About us
    • Impact stories
    • Support us
    • Our funders
    • Contact us
  • search

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Developing positive attitudes
  • Cross-curricular contexts

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics
  • Mechanics
  • Calculus

For younger learners

  • Early Years Foundation Stage

2D-3D

Age 16 to 18
Challenge Level Yellow star
  • Problem
  • Student Solutions

Well done Daniel Tuck for your solution and also Tony Cardell, age 14, State College Area High School, Pennsylvania, USA

The first part requires only some very elementary geometry and knowledge of how to work out the area of circles and triangles. The solution given here uses calculus for finding the volume in the second part. If you can find this volume without calculus we'll be pleased to publish your method.

We may say that the distance between the two centers of the circles is $r$ (since each lies on the other circumference). Notice also that the intersection points of the two circles are also $r$ away from both centers (by definition of being the intersection of equal size circles with radius $r$). Thus the two centers and any one of the two intersection points forms an equilateral triangle of side $r$. The area of each equilateral triangle is

\[A_1 = {r \over2}\times{r\sqrt 3 \over 2}\] that is

\[A_1 = {r^2\sqrt3 \over 4}.\]

So the area of the region is equal to twice the area of an equilateral triangle with side $r$ plus the extra outside the triangle. Since an equilateral triangle has angles of 60 degrees, one sixth of 360, the number of degree in a circle, the area of this extra region is 1/6 the area of a circle minus the area of an equilateral with sides $r$.

\[A_2 = {\pi r^2 \over 6} - {r^2\sqrt3 \over 4}.\]

There are 4 of these extra regions, so our total area of the region in $2D$ is

$$\eqalign { 4A_2 + 2A_1 &= 4\left({\pi r^2 \over 6} - {r^2\sqrt3 \over 4}\right) + 2\left({r^2\sqrt3 \over 4}\right) \cr &= {2\pi r^2 \over 3} - {r^2 \sqrt3 \over 2} .}$$

The volume between two spheres in a similar position is slightly more complex. To make the drawing of the circles into one of spheres, say the $x$-axis is a line through the diameters from left to right of the circles. Rotate the circles around the $x$-axis and you will sweep out a similar drawing with spheres.

Taking the origin O of the coordinate system at one of the centers then the points $P_1$ and $P_2$ of intersection of the circles drawn in 2D are at

\[({r\over 2}, \pm{r\sqrt3 \over 2}).\]

Consider the arc joining the origin to the point $P_1$. This is an arc of the circle center $(r,0)$ radius $r$ which has equation: \[(x-r)^2 + y^2 = r^2\]

or

\[ y = \sqrt(2xr - x^2).\]

The volume of the intersection of the spheres is double the volume of revolution formed when this arc is rotated through 360 degrees about the $x$ axis.

$$\eqalign { \rm{Volume} &= 2\int_0^{r/2}\pi (2xr - x^2)dx \cr &= 2\pi \left[x^2r - {x^3 \over 3}\right]_0^{r/2} \cr &= 2\pi \left[{r^3\over 4} - {r^3 \over 24}\right] \cr &= {5\pi r^3 \over 12}. }$$

You may also like

Baby Circle

A small circle fits between two touching circles so that all three circles touch each other and have a common tangent? What is the exact radius of the smallest circle?

Kissing

Two perpendicular lines are tangential to two identical circles that touch. What is the largest circle that can be placed in between the two lines and the two circles and how would you construct it?

Logosquares

Ten squares form regular rings either with adjacent or opposite vertices touching. Calculate the inner and outer radii of the rings that surround the squares.

  • Tech help
  • Accessibility Statement
  • Sign up to our newsletter
  • Twitter X logo

The NRICH Project aims to enrich the mathematical experiences of all learners. To support this aim, members of the NRICH team work in a wide range of capacities, including providing professional development for teachers wishing to embed rich mathematical tasks into everyday classroom practice.

NRICH is part of the family of activities in the Millennium Mathematics Project.

University of Cambridge logo NRICH logo