Or search by topic
Congratulations to Fok Chi Kwong from Yuen Long Merchants Association Secondary School, Hong Kong on this solution.
We may find the required polynomial by starting from the expression :
$$x = 1 + \sqrt 2 + \sqrt 3$$.
Squaring both sides and simplifying, we get
\[x - 1 = \sqrt 2+ \sqrt 3 \] \[x^2 - 2x + 1 = 5 + 2\sqrt 6 \] \[ x^2 - 2x - 4 = 2\sqrt 6 \] \[(x^2 - 2x - 4)^2 = 24 \] \[x^4 - 4x^3 + 4x^2 - 8x^2 + 16x + 16 = 24 \] \[x^4 - 4x^3 - 4x^2 + 16x - 8 = 0 \]
Thus $p(x) = x^4 - 4x^3 - 4x^2 + 16x - 8$ is the required polynomial.
Tony Cardell, State College Area High School, PA, USA, also sent in a good solution.
A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?